Design of Shafts

Introduction

- Torque and Power Transmission
- Most of rotary prime movers either motors or turbines use shaft to transfer the power
- Bearings are required for support
- Shaft failure analysis is critical

Shaft Design

- Material Selection (usually steel, unless you have good reasons)
- Geometric Layout (fit power transmission equipment, gears, pulleys)
- Failure strength
 - Static strength
 - Fatigue strength
- Shaft deflection
 - Bending deflection
 - Torsional deflection
 - Slope at bearings and shaft-supported elements
 - Shear deflection due to transverse loading of short shafts
- Critical speeds at natural frequencies

Shaft Materials

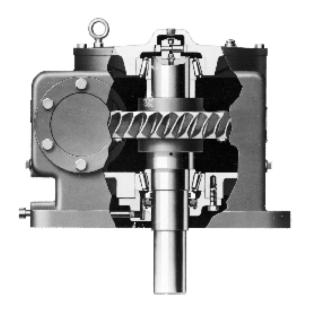
- Deflection primarily controlled by geometry, not material
- Strain controlled by geometry but material has a role in stress
- Strength, Yield or UTS is a material property. Cold drawn steel typical for d< 3 in.
- HR steel common for larger sizes. Should be machined all over.
- Low production quantities: Machining
- High production quantities: Forming

ME 423: Machine Design Instructor: Ramesh Singh

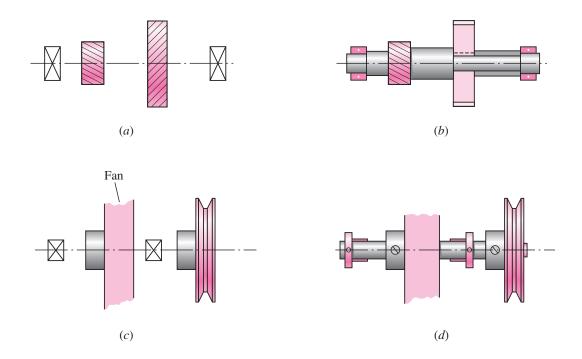
4

Shaft Layout

- Shafts need to accommodate bearings, gears and pulleys which should be specified
- Shaft Layout
 - Axial layout of components
 - Supporting axial loads (bearings)
 - Providing for torque transmission (gearing/sprockets)
 - Assembly and Disassembly(repair & adjustment)



Axial Layout of Components



Supporting Axial Load

- Axial loads must be supported through a bearing to the frame
- Generally best for only one bearing to carry axial load to shoulder

Figure 7-3

Tapered roller bearings used in a mowing machine spindle. This design represents good practice for the situation in which one or more torquetransfer elements must be mounted outboard. (Source: Redrawn from material furnished by The Timken Company.)

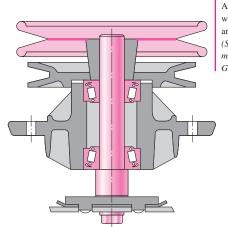
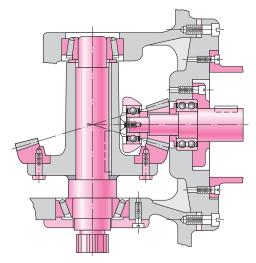


Figure 7-4

A bevel-gear drive in which both pinion and gear are straddle-mounted. (Source: Redrawn from material furnished by Gleason Machine Division.)



ME 423: Machine Design Instructor: Ramesh Singh

7

Torque Transmission

- Common means of transferring torque to shaft
 - Keys
 - Splines



- Pins
- Press or shrink fits
- Tapered fits
- Keys are one of the most effective
 - Slip fit of component onto shaft for easy assembly
 - Positive angular orientation of component
 - Can design the key to be weakest link to fail in case of overload

Shaft Design for Stresses

- Stresses are only evaluated at critical location
- Critical locations are usually
 - On the outer surface
 - Where the bending moment is large
 - Where the torque is present
 - Where stress concentrations exist

Shaft Stresses

- Standard stress equations can be customized for shafts
- Axial loads are generally small so only bending and torsion will be considered
- Standard alternating and midrange stresses can be calculated

$$\sigma_a = K_f \frac{M_a c}{I}$$
 $\sigma_m = K_f \frac{M_m c}{I}$
 $\tau_a = K_f s \frac{T_a c}{J}$ $\tau_m = K_f s \frac{T_m c}{J}$
 $\sigma_a = K_f \frac{32M_a}{\pi d^3}$ $\sigma_m = K_f \frac{32M_m}{\pi d^3}$
 $\tau_a = K_f s \frac{16T_a}{\pi d^3}$ $\tau_m = K_f s \frac{16T_m}{\pi d^3}$

Design Stresses

Calculating vonMises Stresses

$$\sigma_a' = (\sigma_a^2 + 3\tau_a^2)^{1/2} = \left[\left(\frac{32K_f M_a}{\pi d^3} \right)^2 + 3\left(\frac{16K_{fs} T_a}{\pi d^3} \right)^2 \right]^{1/2}$$

$$\sigma_m' = (\sigma_m^2 + 3\tau_m^2)^{1/2} = \left[\left(\frac{32K_f M_m}{\pi d^3} \right)^2 + 3\left(\frac{16K_{fs} T_m}{\pi d^3} \right)^2 \right]^{1/2}$$

Modified Goodman

Substituting vonMises into failure criterion

$$\frac{1}{n} = \frac{\sigma_a'}{S_e} + \frac{\sigma_m'}{S_{ut}}$$

$$\frac{1}{n} = \frac{16}{\pi d^3} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{ut}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\}$$

Solving for diameter

$$d = \left(\frac{16n}{\pi} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{ut}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\} \right)^{1/3}$$

Design of shafts

- Similar approach can be taken with any of the fatigue failure criteria
- Equations are referred to by referencing both the Distortion Energy method of combining stresses and the fatigue failure locus name. For example, DE-Goodman, DE-Gerber, etc.
- In analysis situation, can either use these customized equations for factor of safety, or can use standard approach from Ch. 6.
- In design situation, customized equations for d are much more convenient.

Gerber

DE-Gerber

$$\frac{1}{n} = \frac{8A}{\pi d^3 S_e} \left\{ 1 + \left[1 + \left(\frac{2BS_e}{AS_{ut}} \right)^2 \right]^{1/2} \right\}$$

$$d = \left(\frac{8nA}{\pi S_e} \left\{ 1 + \left[1 + \left(\frac{2BS_e}{AS_{ut}} \right)^2 \right]^{1/2} \right\} \right)^{1/3}$$

where

$$A = \sqrt{4(K_f M_a)^2 + 3(K_{fs} T_a)^2}$$
$$B = \sqrt{4(K_f M_m)^2 + 3(K_{fs} T_m)^2}$$

Other Criteria

ASME Elliptic

$$\frac{1}{n} = \frac{16}{\pi d^3} \left[4 \left(\frac{K_f M_a}{S_e} \right)^2 + 3 \left(\frac{K_{fs} T_a}{S_e} \right)^2 + 4 \left(\frac{K_f M_m}{S_y} \right)^2 + 3 \left(\frac{K_{fs} T_m}{S_y} \right)^2 \right]^{1/2}$$

$$d = \left\{ \frac{16n}{\pi} \left[4 \left(\frac{K_f M_a}{S_e} \right)^2 + 3 \left(\frac{K_{fs} T_a}{S_e} \right)^2 + 4 \left(\frac{K_f M_m}{S_y} \right)^2 + 3 \left(\frac{K_{fs} T_m}{S_y} \right)^2 \right]^{1/2} \right\}^{1/3}$$

DE Soderberg

$$\frac{1}{n} = \frac{16}{\pi d^3} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{yt}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\}$$
(7-13)

$$d = \left(\frac{16n}{\pi} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{yt}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\} \right)^{1/3}$$
(7-14)

ME 423: Machine Design Instructor: Ramesh Singh

(7-12)

Rotating Shaft

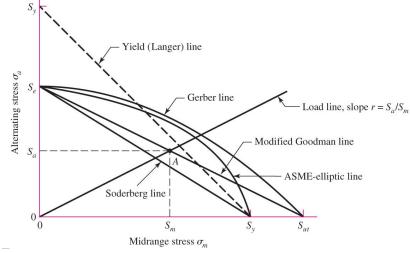
- For rotating shaft with steady, alternating bending and torsion
 - Bending stress is completely reversed (alternating), since a stress element on the surface cycles from equal tension to compression during each rotation
 - Torsional stress is steady (constant or static)
 - Previous equations simplify with Mm and Ta equal to 0

Yielding Check

- Always necessary to consider static failure, even in fatigue situation
- Soderberg criteria inherently guards against yielding
- ASME-Elliptic criteria takes yielding into account, but is not entirely conservative

Gerber and modified Goodman criteria require specific check

for yielding



ME 423: Machine Design Instructor: Ramesh Singh

Yield Check

Use von Mises maximum stress to check for yielding,

$$\sigma'_{\text{max}} = \left[(\sigma_m + \sigma_a)^2 + 3 (\tau_m + \tau_a)^2 \right]^{1/2}$$

$$= \left[\left(\frac{32K_f (M_m + M_a)}{\pi d^3} \right)^2 + 3 \left(\frac{16K_{fs} (T_m + T_a)}{\pi d^3} \right)^2 \right]^{1/2}$$

$$n_y = \frac{S_y}{\sigma'_{\text{max}}}$$

• Alternate simple check is to obtain conservative estimate of σ' max by summing

$$\sigma'_{\max} \approx \sigma'_a + \sigma'_m$$

Deflection Considerations

- Deflection analysis requires complete geometry & loading information for the entire shaft
- Allowable deflections at components will depend on the component manufacturer's specifications.

Table 7-2

Typical Maximum Ranges for Slopes and Transverse Deflections

Slopes		
Tapered roller	0.0005–0.0012 rad	
Cylindrical roller	0.0008-0.0012 rad	
Deep-groove ball	0.001-0.003 rad	
Spherical ball	0.026–0.052 rad	
Self-align ball	0.026–0.052 rad	
Uncrowned spur gear	< 0.0005 rad	

Transverse De	eflections	
Spur gears with $P < 10$ teeth/in	0.010 in	
Spur gears with $11 < P < 19$	0.005 in	
Spur gears with $20 < P < 50$	0.003 in	



Determination of deflections

- Linear & angular deflections, should be checked at gears and bearings
- Deflection analysis is straightforward, but very lengthy and tedious to carry out manually. Consequently, shaft deflection analysis is almost always done with the assistance of software(usually FEA)
- For this reason, a common approach is to size critical locations for stress, then fill in reasonable size estimates for other locations, then check deflection using FEA or other software
- Software options include specialized shaft software, general beam deflection software, and finite element analysis (FEA) software.

ME 423: Machine Design Instructor: Ramesh Singh

20

Critical Speeds

- For a rotating shaft if the centripetal force is equal to the elastic restoring force, the deflection increases greatly and the shaft is said to "whirl"
- Below and above this speed this effect is not pronounced
- This critical (whirling speed) is dependent on:
 - The shaft dimensions
 - The shaft material and
 - The shaft loads

Critical speeds of shafts

Force balance of restoring force and centripetal, $m\omega^2 y = ky$

k is the stiffness of the transverse vibration

$$\omega = 2 \pi N_c = \sqrt{\frac{k}{m}}$$

The critical speed for a point mass of m,

$$N_c = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

For a horizontal shaft,

$$N_c = \frac{1}{2\pi} \sqrt{\frac{g}{y}}$$

Where y = the static deflection at the location of the concentrated mass

Ensemble of lumped masses

 For ensemble of lumped masses Raleigh's method pf lumped masses gives,

$$\omega_1 = \sqrt{\frac{g \sum w_i y_i}{\sum w_i y_i^2}}$$

• where w_i is the weight of the i^{th} location and y_i is the deflection at the i^{th} body location

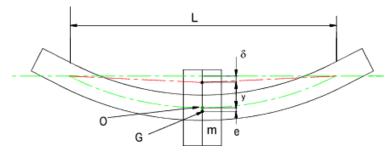
Beam Theory

- m = Mass (kg)
- Nc = critical speed (rev/s)
- g = acceleration due to gravity (m.s-2)
- O = centroid location
- G = Centre of Gravity location
- L = Length of shaft
- E = Young's Modulus (N/m2)
- I = Second Moment of Area (m4)
- $y = deflection from \delta with shaft rotation = \omega \delta static deflection (m)$
- ω = angular velocity of shaft (rads/s)

Whirling Speed

• The centrifugal force on the shaft = m ω^2 (y + e) and the inward pull exerted by the shaft, F = y48EI / L³ for simply supported. For a general beam F= y K EI / L³

where K is constant depending on the loading and the end support conditions

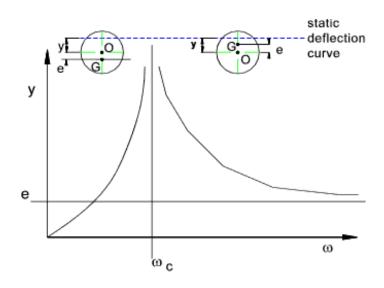


m
$$\omega^2$$
(y +e) = y $\frac{\text{KEI}}{\text{L}^3}$ therefore y = $\left(\frac{\text{KEI}}{\text{m}\omega^2\text{L}^3} - 1\right)$

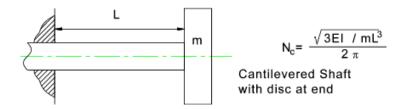
Critical Speed

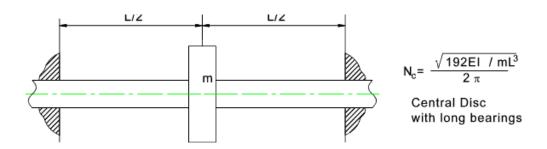
The critical speed is given by

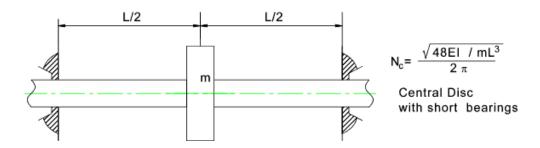
$$y = \frac{\omega^2 \cdot e}{(\omega_c^2 - \omega^2)}$$

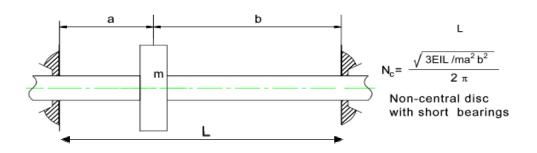


Critical speeds of some configurations

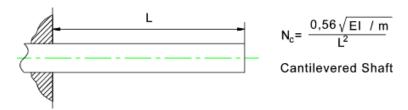






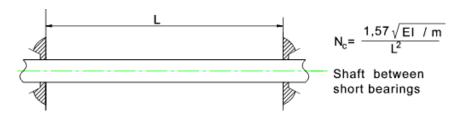


Cantilevered Shaft

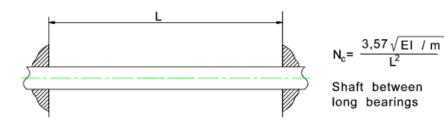


m = mass /unit length

Shaft Between short bearings



m = mass /unit length



m = mass / unit length

Dunkerley's Method

This is known as Dunkerley's method an is based on the theory of superposition....

