
MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017

Chapter 4: Immersed Body Flow
[pp. 445-459 (8e), or 374-386 (9e)]

Dr. Bing-Chen Wang

Dept. of Mechanical Engineering

Univ. of Manitoba, Winnipeg, MB, R3T 5V6

When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net

force, F, which can be decomposed into two components:

• a drag force FD, which is parallel to the flow direction, and

• a lift force FL, which is perpendicular to the flow direction.

The drag coefficient CD and lift coefficient CL are defined as follows:

CD =
FD

1
2
ρU2A

and CL =
FL

1
2
ρU2Ap

, (112)

respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact

with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing).

In the remainder of this section, we focus our attention on the drag forces. As discussed previously,

there are two types of drag forces acting on a solid body immersed in a viscous flow:

• friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the

surface of a solid body;

• pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front

and rear surfaces of a solid body.

The friction drag and pressure drag on a finite immersed body are defined as

FD, vis =

∫

A
τwdA and FD, pres =

(∫

A
pdA

)

Streamwise component

, (113)

respectively. In an inviscid flow, the total drag force exerted on a solid body is solely contributed by

the pressure drag. However in a viscous flow, the total drag force is often a combination of both friction

and pressure drags, i.e.

FD = FD, vis + FD, pres , (114)

and in consequence,

CD = CD, vis + CD, pres . (115)

2.6. Friction Drag for Flow over a Flat Plate with Zero Incidence

In this subsection, we consider the drag forces for a flow past a finite flat plate with zero incidence

(i.e., the flow is parallel to the flat plate). The drag coefficient CD will be investigated according to

the following three scenarios of BLs developed over the flat plate: (1) a laminar BL, (2) a turbulent

BL, and (3) a laminar-to-turbulent transition BL.

For a BL flow past over a finite flat plate (see Fig. 16), the drag coefficient CD relates to the local

skin friction coefficient Cf as

CD =
FD

1
2
ρU2A

=

∫

A τwdA
1
2
ρU2A

=
1

A

∫

A
CfdA . (116)

To derive the above equation, we used the definition of the local skin friction coefficient: Cf = τw
1

2
ρU2

.
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Fig. 16: A finite flat plate parallel to a viscous flow. The length and depth of the plate are L and b,
respectively. The drag force is contributed by the wall friction drag only.

(1) Laminar BL over a Finite Flat Plate

As demonstrated previously in Table 9.2 (see page 47), the exact solution on the local skin coefficient

Cf for a laminar BL is

Cf =
τw

1
2
ρU2

=
0.664√
Rex

. (117)

Substituting this equation into Eq. (116), we have

CD =
1

A

∫

A

0.664√
Rex

dA =
1

bL

∫ L

0

0.664

(
U

ν

)−0.5

x−0.5 · bdx = 1.33
( ν

UL

)0.5
, (118)

or,

CD =
1.33√
ReL

(for a laminar BL) , (Eq. (9.33) in textbook)

where ReL =
UL

ν
, and L and b represent the length and the depth of the flat plate, respectively.

(2) Turbulent BL over a Finite Flat Plate

As derived previously (on page 51), the local skin friction coefficient for a turbulent BL over a flat plate

is given by Eq. (93), i.e.

Cf =
τw

1
2
ρU2

=
0.0594

Re
1/5
x

. (93)

Substituting the equation into Eq. (116), we have

CD =
1

A

∫

A

0.0594

Re
1/5
x

dA =
1

bL

∫ L

0

0.0594

(
U

ν

)−0.2

x−0.2 · bdx = 0.0742
( ν

UL

)0.2
, (119)

or,

CD =
0.0742

Re
1/5
L

(for a turbulent BL, valid for 5× 105 < ReL < 107) , (Eq. (9.34) in textbook)

For ReL < 109, Schlichting gives the following semi-empirical equation for a turbulent viscous flow

over a finite flat plate

CD =
0.455

(logReL)2.58
, (Eq. (9.35) in textbook)

which fits experimental data very well.

(3) Laminar-to-Turbulent Transition BL over a Finite Flat Plate

For a BL experiencing transition from laminar to turbulent pattern, the value of CD based on the
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turbulent BL (cf. Eq. (9.34) and Eq. (9.35) in textbook) needs to be corrected to account for the initial

laminar BL effect. If the transition Reynolds number is 5× 105, the drag coefficient is

CD =
0.0742

Re
1/5
L

−1740

ReL
︸ ︷︷ ︸

correction

(for 5× 105 < ReL < 107) , (Eq. (9.37a) in textbook)

or,

CD =
0.455

(logReL)2.58
−1610

ReL
︸ ︷︷ ︸

correction

(for 5× 105 < ReL < 109) . (Eq. (9.37b) in textbook)

Figure 17 plots the drag coefficient for a BL which transitions from laminar to turbulent pattern

at Rex = 5× 105 for a viscous flow past a flat plate. The values of drag coefficient CD for the laminar

BL (cf. Eq. (9.33) in textbook), turbulent BL (cf. Eqs. (9.34) and (9.35) in textbook) and transition

BL (cf. Eqs. (9.37b) in textbook), are demonstrated and compared in the figure. From Fig. 17, it is

clear that for a viscous BL flow over a finite flat plate:

• viscous drag is significant when ReL is low;

• at a given ReL (for a given length of the plate L and a given free-stream velocity U), the value of

CD is less for a laminar BL; implying that for a given length of the plate, the drag coefficient is less,

when laminar flow is maintained over the longest possible distance;

• at large ReL (> 107), the effects of the initial laminar BL on CD can be ignored.

2.7. Pressure Drag

Figure 18 shows a viscous flow past a finite flat plate (perpendicular to the flow). The friction drag over

the plate is zero, because the plate is perpendicular to the flow. The drag force is contributed by the

pressure drag only, which is

FD =

(∫

A
pdA

)

Streamwise component

. (120)

When flow passes an object with sharp edges, BL separation is triggered and wake is induced.

The drag coefficient for all objects with sharp edges is essentially independent of Reynolds number

Fig. 17: Variation of drag coefficient CD with Reynolds number ReL for a smooth flat plate parallel to
a viscous flow.
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(for Re > 1000) because the size of the wake is fixed by the geometry of the object. Drag coefficients

for some selected sharp-edged objects (for Re > 1000) are given in Table 9.3.

U,  ��  

Fig. 18: A finite flat plate perpendicular to a viscous flow. The friction drag is zero (because the plate
is perpendicular to the flow), and the drag force is contributed by the pressure drag only.

2.8. Combined Friction & Pressure Drag: for Flow over a Sphere or Cylinder

In the case of a flow over a sphere or a cylinder, both friction drag and pressure drag contribute to the

total drag, i.e. FD = FD, pres+FD, vis. However, the contributions from FD, pres and FD, vis to the total

drag FD depend upon the Reynolds number and surface roughness (such as dimples on a golf ball).

◮ at a very low Reynolds number for Re ≤ 1, Stokes showed analytically that there is no flow separation

from a sphere, the wake is laminar and the drag is predominantly the friction drag, and the total drag

coefficient is

CD =
24

Re
, (121)

which is plotted in Fig. 19. From the figure, it is clear that the above analytical result of Stokes deviates

from experimental data if Re > 1.
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Fig. 19: (Fig. 9.11 in the textbook) Drag coefficient CD of a smooth sphere as a function of Reynolds
number Re.

◮ Fig. 19 shows that as Re increases, CD decreases. At Re ≈ 1000, 95% of the total drag is due to

the pressure drag. For 1000 < Re < 3× 105, CD is approximately constant (i.e., CD is approximately

independent of Re). If CD ≈ constant, FD = CD · (1
2
ρU2)A ⇒ FD ∝ U2, indicating a rapid increase

in drag in response to the magnitude of U .

◮ If Re > 3×105, transition occurs and the BL on the forward portion of the sphere becomes turbulent.

The point of separation then moves downstream and the size of the wake decreases. Therefore, the net

pressure drag is reduced.

The effects of a laminar BL and a turbulent BL over a smooth ball are compared in Fig. 20.

Furthermore, the result of the inviscid flow is also shown.

• For an inviscid flow, pressure drag is the only drag (viscous drag is zero identically because µ ≡ 0).

Because the pressure is symmetrically distributed (w.r.t. θ) around the sphere, the total drag (purely

due to the pressure drag) in an inviscid flow is zero identically, leading to the so-called “d’Alembert’s

paradox” (which states that for an inviscid flow, the drag of any body of any shape immersed in a

uniform stream is identically zero).

• For the viscous laminar BL flow, the BL separation occurs around θ = 82◦; and for the turbulent BL

flow, the BL separation is delayed to approximately θ = 120◦. In the turbulent case, the low pressure

wake region is much reduced. Therefore, the pressure drag due to the pressure difference between the

front and rear of a sphere is greatly reduced.

Figure 21 compares flow separation patterns of a laminar BL over a smooth ball and a turbulent

BL over a rough ball. The dimples on the rough ball triggers the onset of turbulence. The turbulent BL

delays the BL separation, and therefore, makes the low pressure wake region much narrower, resulting

in a much reduced pressure drag. With a reduced drag force, a golf ball can fly over a much longer

distance than a smooth ball! The key is to use dimples to trigger the onset of a turbulent BL.

Figure 22 shows the drag coefficient for flow over a smooth cylinder. The distribution of CD around

the circular cylinder is similar to that around a sphere shown previously in Fig. 19. However, the value

of CD for a smooth cylinder is about twice higher than that for a smooth sphere.
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Fig. 20: Pressure distribution around a smooth sphere for laminar and turbulent BL flow, compared
with the inviscid flow result. For the inviscid flow, the pressure coefficient Cp = p−p∞

1

2
ρU2

= 1 − 4 sin2 θ,

which represents a symmetrical distribution around the sphere. For the viscous laminar BL flow, the
BL separation occurs around θ = 82◦; and for the turbulent BL flow, the BL separation is delayed to
approximately θ = 120◦.

(a) Laminar BL separation on a smooth ball (b) Turbulent BL separation on a rough ball

Fig. 21: Flow separation on a sphere with laminar and turbulent BLs (source of figure [8]). The dimples
on the rough (golf) ball triggers the onset of turbulence. The turbulent BL delays the BL separation,
and therefore, makes the low pressure wake region much narrower. As a result, the pressure drag due
to the pressure difference between the front and back of the sphere is greatly reduced.
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Fig. 22: (Fig. 9.13 in the textbook) Drag coefficient CD of a smooth circular cylinder as a function of
Reynolds number Re.

Characteristic Area in Drag Coefficient

The drag coefficient is defined based on a characteristic area A, i.e.

CD =
FD

1
2
ρV 2A

.

When we use this equation, the characteristic area A assumes one of the following three types:
◮ Wetted area (i.e. the total surface area that is in contact with fluid), typically for calculation of
the wall friction drag over the surface of a flat plate or a ship.
◮ Frontal area (i.e. the projected area as seen by the flow), typically for calculation of aerodynamic
drag over a thick blunt bluff body such as a cylinder, a car, and a hemisphere. Calculations involving
Table 9.3, Fig. 9.11 and Fig. 9.13 (of the textbook) are usually based on the frontal area.
◮ Planform area (i.e. the maximum projected area as seen from above), typically for calculation of
aerodynamic drag and lift for a wide flat body such as a wing or a hydrofoil.

2.9. Streamlining

The extent of the wake (separated flow region) behind an object can be reduced or even eliminated

by using streamlining (based on proper body shapes), which in turn significantly reduces the pressure

drag. The speed of flows around a moving object (e.g., flow past an airplane or a truck) is typically

very high (in consequence, the value of Re is very high) in many engineering cases, and therefore,

the most dominant form of drag is typically caused by the pressure drag. The streamlining technique

can be the key to reduce the pressure drag.

Figure 23 compares the flow separation patterns of a blunt body and a streamlined “teardrop”

shaped-body. The streamlined teardrop shape creates a much more gradual adverse pressure gradient.

The much less severe pressure gradient then promotes attached flow much further along the body to

reduce/eliminate flow separation. Figure 24 shows truck model 587 manufactured by the Peterbilt

Motors Company. This truck has been thoroughly tested in terms of aerodynamic performances. The

streamlined hood and molded bumper smoothly divert airflow around the vehicle and trailer in order
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to minimize flow separation and pressure drag.

Fig. 23: Comparison of flow separation and drag on blunt and streamlined shapes (source of figure [2]).

Fig. 24: Truck model 587 manufactured by Peterbilt Motors Company (based in Denton, Texas).
According to the company sales advertisement, “this truck model is innovatively designed for those
who demand outstanding aerodynamic performance, superior fuel efficiency and the highest overall
value. A streamlined hood and molded bumper smoothly divert airflow around the vehicle and trailer.
Extensive wind tunnel testing and computational fluid dynamics have proven a 1.25% fuel-efficiency
gain. The model 587 is SmartWay designated by the EPA as fuel efficient and environmentally friendly”
(source of figure [3]).

Interesting web links related to aerodynamic drag:

Aeroflexible aerodynamics: https://www.youtube.com/watch?v=Nbk8zSRCytA

Bus flow and design: https://www.youtube.com/watch?v= NPNiyR5cWo

Speedo research (skin friction): https://www.youtube.com/watch?v=dvMdqvO3R9g
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