# 7. MATRIX FORCE METHOD

### 7.1 INTRODUCTION

Conventional force method.



Structure as a whole or any substructure



- 1. Equilibrium of forces.
- 2. Displacement compatibility.
- 3. Force-displacement relation.

### Matrix Force Method – also called as Flexibility method.

Member forces are treated as the basic unknowns.

Similar to the classical force method, but based on matrix approach.

Based on **finite element** concept

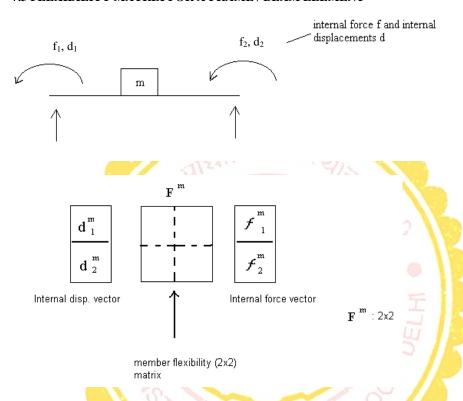


Step-by-step building up of force-displacement relationship using basic elements composing the

### 7.2 ASSUMPTIONS

- Hooke's law.
- Small deflections.
- Change in length under a deflection  $\perp$  to member length = 0.
- Principal of superposition.
- Frames member inextensible.

### 7.3 FLEXIBILITY MATRIX FOR A FRAME / BEAM ELEMENT



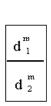
Shears not included since dependent on moments.

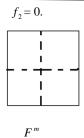
 $F_{ij}^{m}$  = displacement along  $i^{th}$  force due to unit force along  $j^{th}$  force, all other points being unloaded.

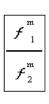
 $f_1 = 1$ 

Comment [SB1]: This will give the first

# 7. MATRIX FORCE METHOD









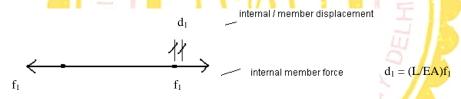
 $\begin{aligned} d_1 &= L/3EI = F_{11}, \\ d_2 &= -L/6EI = F_{21} \\ \text{(derived from slope deflection relations)} \end{aligned}$ 

Similarly, 
$$f_2 = 1 \& f_1 = 0 \Rightarrow 2^{\text{nd}} \text{ column of } \begin{bmatrix} F & m \end{bmatrix}$$

Similarly, 
$$F_{12} = -\frac{L}{6EI}$$
 &  $F_{22} = \frac{L}{3EI}$ 

$$F_m = \left(\frac{L}{6EI}\right) \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

# 7.4 Collective members FLEXIBILITY MATRIX FOR A TRUSS ELEMENT

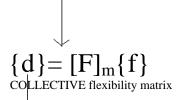


### 7.5 COLLECTIVE MEMBER FLEXIBILITY MATRIX OF STRUCTURE

Matrix of all internal displacements

Matrix of all internal forces

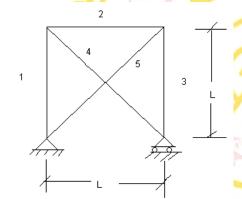
Uncoupled



Internal forces [entire str.]

# **EXAMPLE:**

$$b + r = 5 + 3 = 8$$
  $2j = 2x4 = 8$ 



$$[F^1] = [F^2] = [F^3] = \left(\frac{L}{EA}\right)$$

$$[\mathbf{F}^4] = [\mathbf{F}^5] = \left\lceil \frac{\sqrt{2}}{EA} L \right\rceil$$

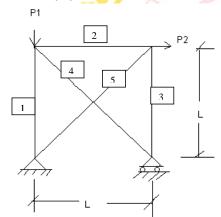
Uncoupled flexibility matrix = [F] = 
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{bmatrix} \left( \frac{L}{EA} \right)$$
 {d} = [F] {f}

$$\{\mathbf{d}\} = \begin{cases} d_1^1 \\ d_1^2 \\ d_1^3 \\ d_1^4 \\ d_1^5 \end{cases} \qquad \{\mathbf{f}\} = \begin{cases} f_1^1 \\ f_1^2 \\ f_1^3 \\ f_1^4 \\ f_1^5 \end{cases}$$

# 7.6 TRANSFORMATION OF FORCE (DETERMINATE STRUCTURE)

To find relationship between internal forces and externally applied forces.

Let 
$$\{P\} = \begin{cases} P_1 \\ P_2 \\ \dots \\ P_n \end{cases} = \text{Loads applied externally on structure.}$$



How internal forces are related to {P}

$$\mathbf{P} = \begin{cases} P_1 \\ P_2 \end{cases}$$

$$\{f\} \equiv [b] \{P\}$$

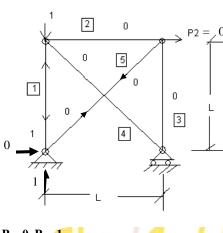
Comment [SB2]: Matrix of all internal forces

 $b_{ij}$  = Internal force  $f_i$  caused by unit external force Pj, with all other external forces = 0.

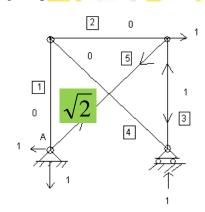
 $P_1 = 1$   $P_2 = 0 \implies f_i$ 's will be first column of [b]

 $P_1 = 0$   $P_2 = 1 \Rightarrow f_i$ 's will be second column of [b]

# $P_1 = 1$ $P_2 = 0$







Apply one by one  $\sum F_x = 0$  $\sum M_A = 0$  $\sum F_Y = 0$ 

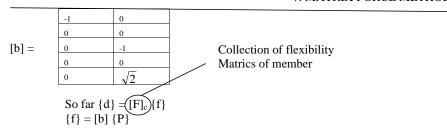
$$\sum F_x = 0$$

$$\sum M_{\perp} = 0$$

$$\sum F_v = 0$$

FTECHNOLOG

# 7. MATRIX FORCE METHOD



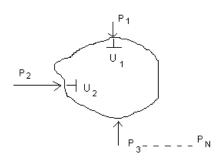
# 7.7 RELATIONSHIP BETWEEN [P] and [u]

[P] = external loads / forces.

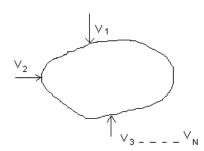
[u] = external displacement.

We will use the principle of virtual work to derive general relation.

# Principle of virtual work



Let  $U_1, U_2 \dots U_N =$  displacements.



System of virtual forces only.

# $\{V\}{<<}\{P\}$

Both {P} and {V} systems are existing simultaneously.

When {P} is applied, {V} rides along the displacements and performs virtual works.

External virtual work By {V} system

Internal virtual works by internal

= forces generated by {V}

{P}

causes deformation {d}

actual

External virtual works =  $\{V\}^T \{u\}$ 

$$\{v\}$$
 internal forces =  $[b]$   $\{V\}$  =  $\{f\}$  ( $\{\delta f\}$  = internal forces)

Therefore internal virtual works=  $\{f\}^T \{d\}$ 

External virtual works = internal virtual works.

$$\{V\}^{T}\{u\} = \{\delta f\}^{T}\{d\}$$
$$= [[b]\{V\}]^{T}\{d\}$$

$$\{u\} = [b]^T \{d\}$$
  $\{d\}$   $\{d\}$   $\{f\}$ 

$$\{u\} = [b]^T [F]_c \{f\}$$
  $\{f\} - - - - [b] \{P\}$ 

Therefore,  $\{u\} = ([b]^T [F]_c [b]) \{P\}$ 

 $F_{TS} = \text{Total}$  structural flexibility matrix.

For the truss structure considered earlier,

$$[F_{TS}] = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{bmatrix} \begin{pmatrix} L \\ EA \end{pmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & \sqrt{2} \end{bmatrix} \left( \frac{L}{EA} \right) \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \left(\frac{L}{EA}\right) \begin{bmatrix} 1 & 0\\ 0 & 1 + 2\sqrt{2} \end{bmatrix}$$

Therefore, 
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = [F]_{TS} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$
$$\begin{cases} u_1 \\ u_2 \end{cases} = \left(\frac{L}{EA}\right) \begin{bmatrix} 1 & 0 \\ 0 & 3.83 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

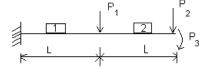
Therefore, 
$$u_1 = \frac{P_1 L}{EA}$$
  $u_2 = \frac{3.83 P_2}{EA}$ 

# 7.8 PROCEDURE FOR ANALYSIS OF STATICALLY DETERMINATE STRUCTURES

Analysis means to determine the internal forces and the deflections

- 1. Determine {P}
- 2. Define f<sup>m</sup>, [F<sup>m</sup>], [F]<sub>c</sub>
- 3. Form [b]
- 4. internal forces {f}=[b]{P}
- 5.  $[F]_{TS} = [b]^T [F]_c [b]$
- 6.  $\{u\} = [F]_{TS}\{P\}$

# **7.9 EXAMPLE** 2



$$\{P\} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} \qquad \{u\} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\begin{array}{c|c}
f_2^1 \\
\hline
f_1^1 \\
\hline
f_1^2
\end{array}$$

$$\{f\} = \begin{bmatrix} f_1^1 \\ f_2^1 \\ f_2^1 \\ f_1^2 \\ f_2^2 \end{bmatrix} \qquad \{d\} = \begin{bmatrix} d_1^1 \\ d_2^1 \\ d_2^2 \\ d_2^2 \end{bmatrix}$$
$$[F]_c = \left(\frac{L}{6EI}\right) \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

$${f} = [b]{P}$$
  
 ${f} - - - 4x1$   
 ${b} - - - 4x3$   
 ${P} - - - 3x1$ 

$$\{f\}$$
----  $4x1$ 

$$\{P\}$$
----3x1

| $P_1 =$ | $P_2 =$ | P3= |
|---------|---------|-----|
| 1.0     | 1.0     | 1.0 |
|         |         |     |

-- All others = 0

$$[b] = \begin{bmatrix} L & 2L & 1 \\ 0 & -L & -1 \\ 0 & L & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

No. of columns = No. of P force.

$$[F]_{TS} = [b]^T [F]_c [b]$$

$$\begin{aligned} & = \left(\frac{L}{6EI}\right) \begin{bmatrix} L & 0 & 0 & 0 \\ 2L & -L & L & 0 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} L & 2L & 1 \\ 0 & -L & -1 \\ 0 & 0 & -1 \end{bmatrix} \\ & = \left(\frac{L}{6EI}\right) \begin{bmatrix} L & 0 & 0 & 0 \\ 2L & -L & L & 0 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2L & 5L & 3 \\ -L & -4L & -3 \\ 0 & 2L & 3 \\ 0 & -L & -3 \end{bmatrix} \end{aligned}$$

$$= \left(\frac{L}{6EI}\right) \begin{bmatrix} L & 0 & 0 & 0\\ 2L & -L & L & 0\\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2L & 5L & 3\\ -L & -4L & -3\\ 0 & 2L & 3\\ 0 & -L & -3 \end{bmatrix}$$

$$= \left(\frac{L}{6EI}\right) \begin{bmatrix} 2L^2 & 5L^2 & 3L \\ 5L^2 & 16L^2 & 12L \\ 3L & 12L & 12 \end{bmatrix}$$
Therefore, 
$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \left(\frac{L}{6EI}\right) \begin{bmatrix} 2L^2 & 5L^2 & 3L \\ 5L^2 & 16L^2 & 12L \\ 3L & 12L & 12 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ R_3 \end{bmatrix}$$
Therefore, 
$$u_1 = \frac{\left(2L^2P_1 + 5L^2P_2 + 3LP_3\right)}{6EI}$$

$$u_2 = \frac{5L^3P_1 + 16L^3P_2 + 12LP_3}{6EI}$$

$$u_3 = \frac{3L^2P_1 + 12L^2P_2 + 12LP_3}{6EI}$$
If 
$$P_2 = P_3 = 0 \implies u_1 = \frac{2P_1L^3}{6EI}$$
 
$$u_2 = \frac{5P_1L^3}{6EI}$$
, 
$$u_3 = \frac{3P_1L^2}{6EI}$$
If 
$$P_1 = P_3 = 0$$
 
$$P_2 = P$$

If the points where displacements are desired are not loaded, we must apply a fictitious load of zero value at those points.

# 7.10 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES

INDETERMINATE STRUCTURES: - convert into a "primary" structure by eliminating redundant forces.

Original structure = applied loads + Unknown redundant

$$f_1 = b_{11}P_1 + b_{12}P_2 + \dots + b_{1N}P_n + b_{1(N+1)}x_1 + b_{1(N+2)}x_2 + \dots$$

$$f_2 = \dots + \dots$$

Hence, 
$$\{f\} = [b_p \mid b_x] \left[ \frac{P}{X} \right]$$

P---- Applied loads

X---- Redundant

 $u_n \rightarrow \mathbf{Unknown}$  Displacements

 $u_x \rightarrow$  **Prescribed** displacement (@ reaction point)

At the points of redundant -

Compatibility condition-- Displacements due to  $\{P\}$  + Displacements due to  $\{X\}$  =  $\{u_x\}$ 

For a structure on rigid supports,  $u_x = 0$ 

As before-

$$\{u\} = [b]^{T} [F]c[b] \{P\}$$

$$= [b_{p}|b_{x}]^{T} [F]c[b_{p}|b_{x}] \left\{ \frac{P}{X} \right\}$$

$$= \begin{bmatrix} b_{p}^{T} \\ b_{x}^{T} \end{bmatrix} [F_{c}b_{p} \quad F_{c}b_{x}] \left\{ \frac{P}{X} \right\}$$

$$\therefore \begin{bmatrix} \frac{u_{p}}{u_{x}} \end{bmatrix} = \begin{bmatrix} b_{p}^{T}F_{c}b_{p} & b_{p}^{T}F_{c}b_{x} \\ b_{x}^{T}F_{c}b_{p} & b_{x}^{T}F_{c}b_{x} \end{bmatrix} \begin{bmatrix} P \\ X \end{bmatrix}$$

$$\begin{bmatrix} \frac{u_{p}}{u_{x}} \end{bmatrix} = \begin{bmatrix} F_{pp} & F_{px} \\ F_{xp} & F_{xx} \end{bmatrix} \begin{bmatrix} P \\ X \end{bmatrix}$$

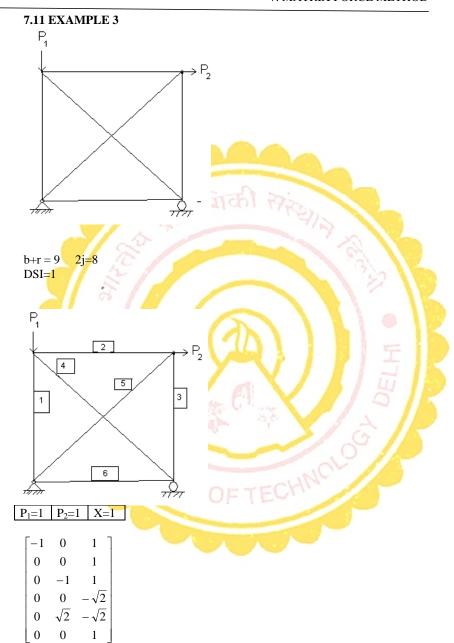
If 
$$\{\mathbf{u}_x\} = 0$$
:  $0 = [F_{xp}]\{P\} + [F_{xx}]\{x\}$   
 $\Rightarrow \{x\} = -[F_{xx}]^{-1}[F_{xp}]\{P\}$   
 $\{f\} = [b_p]\{P\} + [b_x]\{X\}$ 

Unknown Displacements  $\{u_p\} = [F_{pp}]\{P\} + [F_{px}]\{X\}$ 

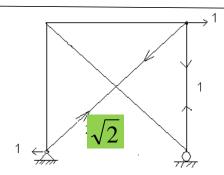
Otherwise  ${X} = [F_{xx}]^{-1}({u_x} - [F_{xp}]{P})$ 

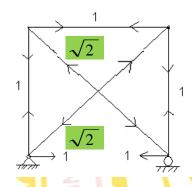
# Summarized Procedure for Analysis of Statically Indeterminate Structures

- 1. Define  $\{P\}, \{X\}$  (DSI need to be found)
- 2. Define {f},from [F]<sub>c</sub>
- 3.  $[b] = [b_p|b_x]$ 4.  $[F_{pp}] = b_p^T F_c b_c$ ,  $[F_{px}] = b_p^T F_c b_x$ ,  $[F_{xp}] = [F_{px}]^T$ ,  $[F_{xx}] = b_x^T F b_x$ 5.  $\{X\} = [F_{xx}]^{-1}(\{u_x\} [F_{xp}]\{P\})$
- 6.  $\{f\} = \left[b_p \mid b_x\right] \left\{\frac{P}{X}\right\}$
- 7.  $\{u_p\} = [F_{pp}]\{P\} + [F_{px}]\{X\}$



# Primary Structure P Make a cut in this member





$$[F]_c = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} L \\ EA \end{bmatrix}}$$

$$[F_{pp}] = [b_p]^T [F]_c [b_p]$$

$$[F_{px}] = [b_p]^T [F]_c [b_x]$$

$$[F_{xp}] = [F_{px}]^T = [b_x]^T [F]_c [b_p]$$

$$[F_{xx}] = [b_x]^T [F]_c [b_x]$$

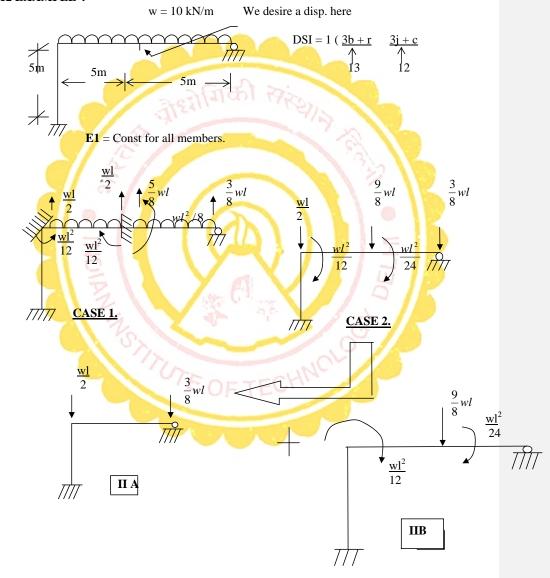
 $\{u_x\} = 0 = \text{Relative Displacements between the cut ends.} \\ \therefore \{X\} = -[F_{xx}]^{-1}[F_{xp}](P)$ 

$$\therefore \{X\} = -[F_{xx}]^{-1}[F_{xy}]\{P\}$$

Ans. 
$$[u_p] = [F_{pp}] \{P\} + [F_{px}] \{X\}$$

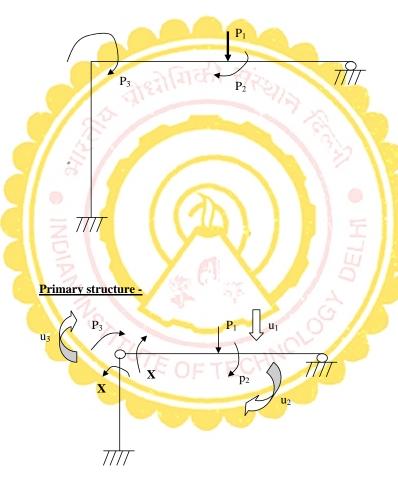
$$\{f\} = [b_p/b_x] \begin{bmatrix} P \\ X \end{bmatrix}$$

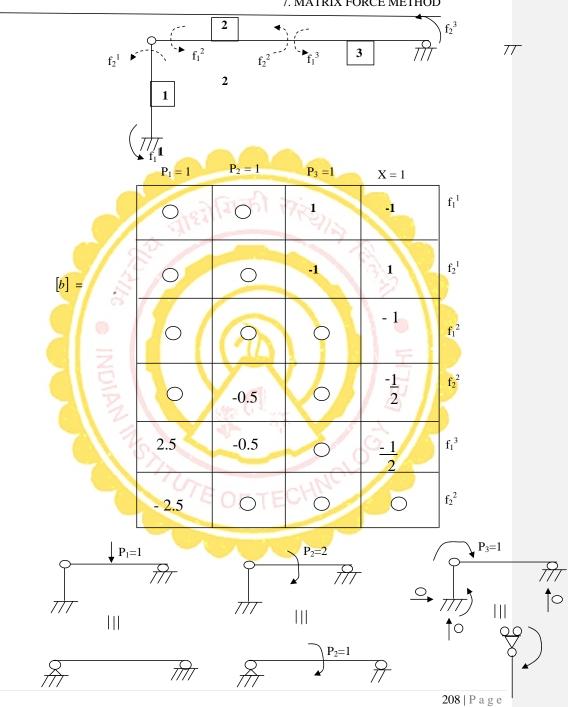
# **7.12 EXAMPLE 4**



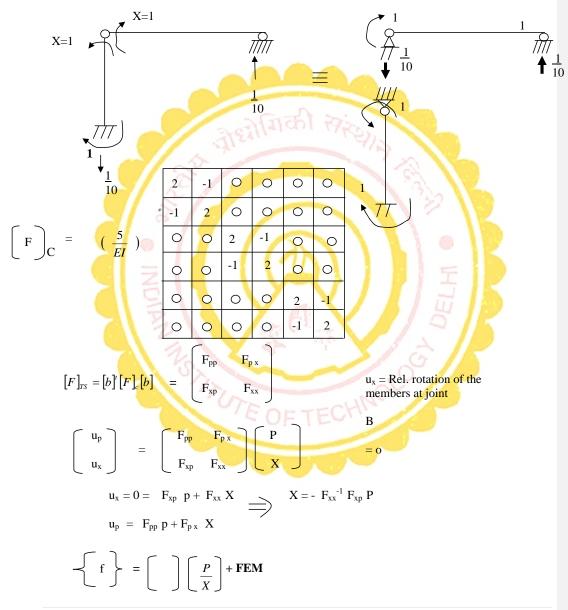
Case II A need not be analyzed.

# CASE II B is equivalent to -

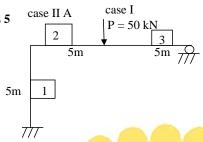




© Dr. Suresh Bhalla, Department of Civil Engineering, IIT Delhi



# 7.13 **EXAMPLE 5**



| <u>3b + r</u> | 3j + c  |
|---------------|---------|
| 13            | 12      |
|               | DSI = 1 |



X = Same as Ex. 4

| 0        | -/i           |
|----------|---------------|
| 0        | 1             |
| 0        | -1            |
| <u>L</u> | $\frac{1}{2}$ |
|          |               |

 $F_c$  = Same as Ex. 1

$$F_{PP} = b_{p}^{T} F_{c} bp = \frac{L^{3}}{EI} \qquad F_{px} = b_{p}^{T} F_{c} b_{x} = \frac{L^{2}}{EI}$$

$$F_{xp} = b_{x}^{T} F_{c} bp = \frac{3L^{2}}{EI} \qquad F_{xx} = b_{x}^{T} F_{c} b_{x} = \frac{3.5I}{EI}$$

$$X = F_{xx}^{-1} F_{xp} P = 0.857 PL$$

$$U_{p} = F_{pp} P + F_{px} X = \frac{1.428PL^{3}}{EI}$$