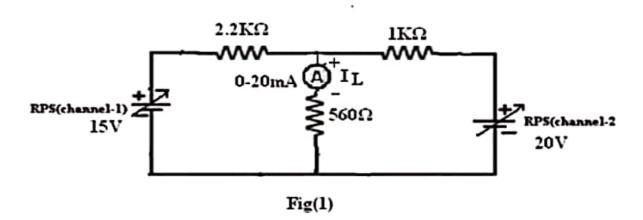
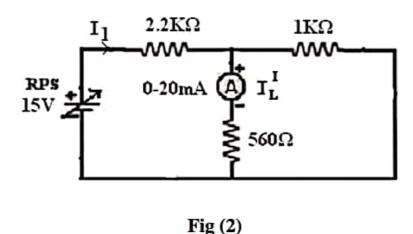
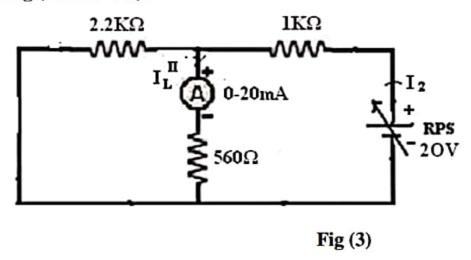

4. VERIFICATION OF SUPERPOSITION THEOREM

AIM: To verify the superposition theorem for the given circuit.

APPARATUS REQUIRED:


S.No	Name Of The Equipment	Range	Туре	Quantity
1	Bread board	-	-	1 NO
2	Ammeter	(0-20) mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	2.2k Ω		1 NO
		lkΩ		1 NO
		560 Ω		1 NO
5	Connecting Wires	-	-	As required


CIRCUIT DIAGRAM:


PRACTICAL CIRCUITS:

When V1&V2 source acting(To find I1):-

When V2 source acting (To find ILII):

THEORY:

SUPERPOSITION THEOREM:

Superposition theorem states that in a lumped ,linear, bilateral network consisting more number of sources each branch current(voltage) is the algebraic sum all currents (branch voltages), each of which is determined by considering one source at a time and removing all other sources. In removing the sources, voltage and current sources are replaced by internal resistances.

PROCEDURE:

- 1. Connect the circuit as per the fig (1).
- 2. Adjust the output voltage of sources X and Y to appropriate values (Say 15V and 20V respectively).
- 3. Note down the current (I_L) through the 560 0hm resistor by using the ammeter.
- 4. Connect the circuit as per fig (2) and set the source Y (20V) to 0V.
- 5. Note down the current (I_L¹⁾ through 560ohm resistor by using ammeter.
- 6. Connect the circuit as per fig(3) and set the source X (15V) to 0V and source Y to 20V.
- 7. Note down the current (I_L¹¹) through the 560 ohm resistor branch by using ammeter.
- 8. Reduce the output voltage of the sources X and Y to 0V and switch off the supply.
- 9. Disconnect the circuit.

THEORITICAL CALCULATIONS

From Fig(2)

$$I_1=V_1/(R_1+(R_2//R_3))$$

$$I_L^1 = I_1^* R_2 / (R_2 + R_3)$$

From Fig(3)

$$I_2=V_2/(R_2+(R_1//R_3))$$

$$I_L^{11} = I_2^* R_1 / (R_1 + R_3)$$

 $I_L = I_L^1 + I_L^{11}$

TABULAR COLUMNS:

From Fig(1)

S. No	Applied	Applied	Current
	voltage	voltage	I _L
	(V ₁) Volt	(V ₂) Volt	(mA)

From Fig(2)

S. No	Applied voltage (V ₁) Volt	Current I _L ^I (mA)

From Fig(3)

S. No	Applied voltage (V ₂) Volt	Current I _L (mA)

S.No	Load current	Theoretical Values	Practical Values
1	When Both sources are acting, I _L		
2	When only source X is acting, IL1		
3	When only source Y is acting, I _L ¹¹	,	

PRECAUTIONS:

- 1. Initially keep the RPS output voltage knob in zero volt position.
- 2. Set the ammeter pointer at zero position.
- 3. Take the readings without parallax error.
- 4. Avoid loose connections.
- Avoid short circuit of RPS output terminals.

RESULT:

EXERCISE QUESTIONS:

1.Using the superposition theorem, determine the voltage drop and current across to resistor 3.3K as shown in figure below.

VIVA QUESTIONS:

- 1) What do you mean by Unilateral and Bilateral network? Give the limitations of Superposition Theorem?
- 2) What are the equivalent internal impedances for an ideal voltage source and for a Current source?
- 3) Transform a physical voltage source into its equivalent current source.
- 4) If all the 3 star connected impedance are identical and equal to ZA, then what is the Delta connected resistors