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7.1 INTRODUCTION

This unit is useful to analyse indeterminate structures, like continuous beams & plane
frames. This method was presented by Prof. G. A. Maney in 1915 as a general method for
analysis of ngld-Jomted structures. The unknowns in this method are degrees of freedom,
i.e. displacements. Therefore, it is one of the displacement methods. It is a classical method
on which the moment distribution method, Kani’s method and matrix stiffness method are
based. The prerequisite for this is the knowledge of fixed end moments computation.

Objectives

After studying this unit, you should be able to carry out analysis of continuous beams and
rigid-jointed plane frames. This involves,

L formulation of equxllbnum equations, ;

] computation of primary unknowns, i.e. dtsplacemems by solvmg linear
simultaneous equations,

e - computation of final member end moments at joints, and

L drawing shear force (SF) and bending moment (BM) diagrams.

7.2 BASIC CONCEPTS

7.2.1 Sign Convention
Clockwise moments and clockwise rotations are considered as positive.

Here, we must recognise the distinction between the words, “moment” and “bending

moment”. The former is a physical concept and the sign depends upon whether it is

clockwise (positive) or anti-Clockwise (negative). The latter is an internal stress resultant of

* astructural member, and is assumed positive when sagging or considered negative when

hogging. Thus, a positive (clockwise) moment at the right hand end of a beam causes

negative (hogging) bending moment there; whereas at the left hand, it causes a positive -

(sagging) bending moment. This must be clearly kept in mind when writing down the S
equations, and while drawing bending moment diagrams (BMDs). 13



Indeterminate 7.2.2 Fixed End Actions

Structures - | Any span of a beam with both ends fixed is subjected to different types of loading. The
formulae for fixed end actions are shown in Table 7.1, which are listed as case nos. 1 to 6.
Case nos. 7 to 9 give fixed end actions produced due to either rotation or lateral translation
of joint. The fixed end moments are useful in formulation of slope deflection equations.

We recall that these fixed end moments are derived by method of consistent deformation.
The displacements are computed by using moment area theorem or Macaulay’s method.

The calculation of fixed end moments is required in various units of this course-topic. You
are advised to remember simple cases by heart and practise the use of various formulag
given in the Table 7.1.
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7.2.3 Rotational Stiffness Slope Deflection Method

Consider a fixed beam AB of span L and flexural rigidity EI as shown in Figure 7.1 (c) in
which end A is rotateG by 0,,.

The moment induced at end A is

0 .
M,z = 4 El —L’1 = kuu 0, (Refer Table 7.1, Case 8)

where k,, =4EI/L is called rorational stiffness which can also be defined as the moment

required at A to produce unit rotation at A.

And, the moment induced at B is
6 .
Mg, =2 Elf = kg, 0, (Refer Table 7.1, Case 8)

where &k, can be defined as the moment produced at B due to the application of unit rotation
atA.
7.2.4 Lateral Displacement Factor

Consider a fixed beam AB of span L and flexural rigidity EI as shown in Figure 7.1 (e). End
A is displaced lateraly by 6 downward with respect to end B, keeping both ends restrained
against rotation. Due to this displacement 6.

My = 6EI% = ka5 X & (Refer Table 7.1, Case 7)

where k,; = 6EI/L? is called lateral displacement factor which can be defined as the
moment produced at A due to unit lateral displacement at A with respect to B.

Slmllarly, MBA = 6E1% = k35 X 5

6 El
Therefore, kA 5§ = _kBS = ?
where k,; is the moment produced at A due to unit displacement at A and kg is the moment
produced at B due to unit displacement at A,

7.3 STEPS FOR ANALYSIS

(a) Computation of fixed end moments : The formulae for fixed end actions for
various load cases are given in Table 7.1. The sign convention followed is that
for moments, i.e. clockwise — positive and anticlockwise — negative,

(b)  Relate member end moments 1o joint displacements : The end moments are as
follows (derived in Section 7. 4) :

Mg, = 215‘1 (eA +20; + 15] + FMy,

Compute the end moments for each member using the expressions. These are
also known as slope deflection equations.

(¢}  Formulate equilibrium equations . These are obtained by making algebraic
sum of moments at each joint as zero. In case of frames with sway, additional
equations are obtained considering shear condition. Details are explained in
Sections 7.5 and 7.9.1. '

(d)  Solve the equations : This will give displacements (primary unknowns), i.e.
8,4, 95, detc.

(e)  Back-substitution : In the expressions for end moments formed in step (b),
“substitute values of known displacements as obtained in step (d). This gives
final end moments for each member. From this, the support reactions can also
be calculated. -

(0 Sketch shear force diagram (SFD) and bending moment diagram (BMD). 45
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7.4 SLOPE DEFLECTION EQUATION

The equation relates ‘member end moments’ to ‘joint displacements’. The relation is derived
as follows. Let us consider member AB of any plane frame or beam as shown in Figure 7.1
(a). A and B are ends of the member. Due to given loading, end A laterally translates

~ downward by 8 with respect to end B and rotation at A and B are 0, and 6 respectively. We

observe that Figure 7.1 (a) can be considered as superposition of four figures, i.e. Figures
7.1.(b) to (e).

LEIBAN

‘ A
C q
2E168/L LEIOB/L
‘ A
;o 1y
6EI6/L GEIG/L
i C

Figure 7.1

In Figure 7.1 (b), A and B are restrained and FM,, & FM,, are resulting fixed end moments
(due to the load action). The Table 7.1 gives the fixed end moments due to different actions
or support settlement/rotation etc.

In Figure 7.1 (¢), end A is rotated by 0, clockwise while B is kept restrained. Due to this
rotation @, the end moments are M, , = kM 6,=4EI0,/L and My, =kp, 0, =2EI8,/L as
explained in Section 7.2.3.

In Figure 7.1 (d), end B is rotated by 65 while A is kept restrained. Due to this rotation 6y,
the end moments are M, p =k, ;05 = 2EI 05/L and My, = kpp0p = 4EI 05/L.

In Figure 7.1(e), end A settles down by 8 with respect to end B while both ends are
restrained against rotation. Due to this settlement, the end moments will be
M=k, 5.8= M,z =ky5.8=(6EIY/L?) at both ends A and B as explained in
Section 7.2.4. -

The end moments M,z and M, are the sumation of the above four cases as shown in
Figures 7.1 (b) to (e). The final moments at ends A and B respectively are as follows :



4E16, " 2E1 7y .OEI S . Slope Deflection M?{'!Qd

Mpp = FMyp+ L 7t IE .

2E10, A4ElIO9; 6FEIS

Mpy = FMpy —7—+—7—+—3 (12)

which can be remembered as

| 2BI(,. . 38)
(7.3)
2El 38

, : (74)

‘When there is no lateral translation 5,
_(20,+6, ‘ | o
MAB = 2EI —L‘—— + FMAB (75)‘

‘ 0, + 20,

Mpq = 2E1) ——— |+ FMp, (1.6)

Note : Here, it should be noted that a lateral translation § which causes the beam to
rotate anti-clockwise as shown in Figure 7.1 (e), is considered positive. Since, it
induces clockwise (positive) end moments, for the opposite case 8 will have to
be taken as negative.

7.5 EQUILIBRIUM EQUATIONS

In this method, displacements, i.e. rotation and translations at the joints are the unknowns.
The unknown displacements are also termed as degrees of freedom or degree of kinematic
indeterminacy. If there are n degrees of freedom (i.e. unknowns) for a given structure, n
equations are requlred to be formulated using equilibrium condluons

The equlhbnum equations for end moments of all members meetmg at a joint canbe
obtained as explained in the following paragraphs.

If there are n number of joints in any structure, for each joint the following procedure is
adopted. Let-us consider joint i, the sumation of all member end moments for all members
meeting at a joint must be equal to external applied moment at that joint

Atjomt i, - Z i =M, a.mn
where,
M; = external moment applied at i,
J = far ends for all members withj = 1 to m, and
m = number of members meeting at joint i. Usually, external moment applied
at joints are zero. In such a case
5™ ' (7.8)
£, 0

Similar equations are formed for each joint.

7.6 ANALYSIS OF CONTINUOUS BEAMS

As slope deflection method is a dlsplacement method the unknowns are displacements.
Axial deformations are neglected in this method and lateral displacement (if any) are known
values, in caag%of continuous beams. Therefore, the unknown degree of freedom are only 47




Indeterminate rotation of joints. Recall the steps for analysis. Here the slope deflection equations are

Structures - 1 formed for each span separately. Then at each joint, moment equilibrium conditions are
applied to form linear simultaneous equations having unknown rotations. By solving these
equations, the unknown rotations are found out.

Example 7.1
Analyse the continuous beam shown in Figure 7.2 (a).

120kN
24kN/m 24kN/m ¢
AT 8
e E e
"‘—,5’“ ——fe——im —-lo 2m+2m-|

109

DnC, D (b)

Figure 7.2

Solution
Unknowns : Slope at A, i.e 0, and slope at B, i.e. Oy
Step 1: Fixed end moments
_ For span AB : (due to uniformely distributed load)

2 2
FMy = - 228 - 72 kN FMy, = BXG 72 kNm
For span BC : FMy and FM -, are due to part u.d.1 and due to point load. Due to
point load :
» _—-60x22%x6
FMp- = — e - —-225 kNm
;60 x 2 x 6
FMCB = 82 = 4675 kNm

For computing fixed end moments due to part u.d.l, let us refer Table 7.1 (Case 5)
and applying method of superposition for downward load for a = 6 m and upward
load for @’=4m

2 @i 2 2
,FM,,BC=_wxaz’[6L 8La+;a_2]+wxa,2{ol, 8La + 3a ]

1212 1212
FM” = — (24x6%) (6x8 ~ 8x8x6 + Ix6%)
Be (12 x 8)
L, |@24x4) (6x8 -8x8x4 + 3Ix4)
(12x 8%
=-335kNm ,
: ” '3 (4L - 3a) 3 (4L—3a’)
FM = 3( _ 3
R T T G T
- 24)(63 !4)(8-—3)(6!_ _ 24)(43 !4)(8-—32)(4!
(12 x 8% C(12x8Y
=545 kNm

48



Thus, FMp-

FM'pe+ FM"yo= —225— 335 = - 560 kN'm Slope Deflection Method
FMeg = FM g+ FM”p +615 + 545 = +1220 kNm

Step 2 - Relate displacements (slopes) to end moments

2E1 (20, +0 2E1(8,+28
My = [———( A ")]—72; Mg, =[—————( A ’*)}72

6 6
2E1 (20, + 6 2EI (9, + 26
My = [-—(8”—9}— 56 Mgp = [~(’;—Q]+ 122

Step 3 : Equilibrium equations
As Cis fixed end, 8- = 0.
Joint A : At hinged joint, M,z =0

EI (20, + 0p)
Hence, —3—— — 72 = 0 (from Step 2)
, 216 .. (D
28, + 0, = E

Joint B: Mg, + Mp=0
EI(6,+28 : EI(20,+0
.[_(A—B_)+72]+[_(—32_56}=0_

Thus, 3 P
(84 + 28p) . ®p) -16
3 2 ~ EI
-9 ..
20,+765 = —

Step 4 : Solution of equations
On solving the two equations (1) and (II), we get

0, = 1—§£ positive (indicates clockwise rotation)

5
% = &
Step 5 : Final moments (can be obtained by substituting the values of 6, and 8 in
Step 2 above).

-52 s . . . .
—== negative (indicates anticlockwise rotation)

", = 2x1334 2 - o

(134-2x352) .
Mg, = 134 32>< 32 +72 = 82 kN m (clockwise moment)

Mge = ~= 2':‘52) - 56 = —82kN m (anticlockwise moment)

- 352

Mcg = 4

+ 122 = 109 kN m (clockwise mbment)

Step 6 : Bending moment diagram

Let us recall here that clockwise moment is considered positive. From previous step,
mark the final end moments for each member with appropriate sign, i.e. clockwise as
positive or anticlockwise as negative. These are shown in Figure 7.2 (b).

At this stage, we revert back to our usual bending moments sign conventions, i.e.
sagging bending moment as positive and hogging bending moment as negative as
given in Section 7.2.1. Now the bendmg moment diagram is easily drawn which is
shown in Figure 7.2 (c). Note that the ordinates for BM are drawn on the side where

bending tension is developed. 49
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SAQ 1

Analyse the continuous beam shown in Figure 7.3. Take EI constant throughout.

10 kN /m 60kN

f*———- L ——efo—— g —+2m‘+ ?mc{

Figure 7.3

Example 7.2

For continuous beam ABC shown in Figure 7.4 (a), if support B settles by 4 mm, find
bending moment at A, Band C.

Take EI as constant = 36 x 10° kN n’.

_§A B C § (a)
- L i{mm settement

I‘_‘——ﬁm ——+T——Bm —f

21kNm 1BkNm WkNm

Figure 7.4

Solution
Unknowns : Slope at B, i.e. 0y is the only unknown; since 8, =0,=0
Fixed end moments v
FM,p = FMp, = FMp.= FM 5 =0 (as no external load acting on beam) |

8 for AB = — 4 mm = - 0.004 m (induces anticlockwise moments)
3 for BC = 4 mm = 0.004 m (induces clockwise moments)
End moments & slopes relation

SpanAB:9,=0 ' /
2 El 3 (= 0.004)
Man = =5~ ["n *T 6 } 0
o E . 3 (= 0.004)



Span BC:8,=0

8 8 (1)
2 El 3 x0.004
Mcp = 8 [68 + —34} av)
Equilibrium equation
2 El 2El

= 1205 — 0.002] + =27 [26; + 0.0015] = 0

giving 8, = 0.25 x 107" radians (clockwise)

On substituting back in the Egs. (I) to (IV) and putting EI = 36 x 10° kN m?, we get,

Final moments ,
M,; = —21 kN m (anticlockwise); Mj, = — 18 kN m (anticlockwise)
My = 18kNm (clockwise) ; Mg = 14kN m (clockwise)
Bending moment diagram

Figure 7.4 (b) is free body diagram showing final moments acting at the joints and
'Figure 7.4 (c) shows bending moment diagram (BMD).

You must take note how the clockwise/anti-clockwise sign of the moments have been
converted into sagging/hogging signs for the bending moment,

Example 7.3

Attempt Example 7.1 with same loading, if support B sinks by 8 mm and
EI = 72 x 10* kN m? uniform throughout.

Solution
Unknowns : 8, and 6 as fixed end slope 6, =0
Span AB : right support B settles, 8 = - 0.008 m
Slope deflection equations are as follows :

My, = 2E {29,, +0,+ 22008 ]- 72

6

and My,

—2-? (9,4 +20; + 3(-0.008) %008 }+ 72

Span BC : left support B settles, 8 = 0.008 m
Slope deflection equations are as follows :

Mpc = %E! [29,, 4+, + 320008 x(i);.oosJ_,S(, =0
2EI

5 [293 + 0.003} ~-56 " (since 0.=0)

Equilibrium equations
JointA: M,p=0
On puttihg values, |

EI(20,+85) = 0.004 x 72x 10° + 72 x 3

504
El

20,48, = 22 | @

Slope Deflection Method
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Joint B: Mg, + Mp-=0

Thus, we get
0,+20 EI®
pr Lat 2% Bl o084 7p| 4 | 2ok, EIXO003 561
3 6 2 4
On substituting EI = 72 x 10* kN m?, we get
EI1(8,+20 ElI®
O, +20)  HO%| 4 5.9
3 2
L 156
On simplification, it gives 20, + 78, = Bl
Solution of equations (I) and (II) gives
— 58 281
Oy = £l and 0, = 7l

On substititing these values in the moment equations, we get final moments

My, = { 28“3“58 }-24 = 31kNm

My = [3@}—2 = -31 kNm
Moy = 2 {e“%}r 122 = 161.5kNm

Example 7.4

Analyse the continuous beam shown in Figure 7.5 (a). El is constant throughout.

Ay BQ‘ f (a)

Figure 7.5

Solution
Unknowns : 0gonlyas 6, = 6. = 0
Fixed end moments

As there are no transverse load on the beam, we have

FM,, = FMg, = FMp- = FMp = 0

{an



Member end moment and slope relation

M, = (2121] ©): My, = (2121] 28,

For span AB

For span BC

1
Mpc = {ZE )(293) Meg = [2EIJ (6p)

Equilibrium equation

My, + Mg = external moment at B = 70 kN m (Positive, since clockwise)

El 0, (% + %J =70 - 8y = 2 (Clockwise)

Final moments (after back substitution)

MAB=20kNm MBA=4OkNm
MBC = 30kN m MCB = 15 kN m

Figure 7.5 (b) is a free body diagram showing moments at joints and Figure 7.5 (¢)
shows bending moment diagram drawn on tension side. Figure 7.5 (d) shows
_deflected shape of the beam.

Again, you are advised to note the sign of all the joint rotation, moments and bending
moments.

SAQ2
Analyse the contingous beam shown in Figure 7.0 (or (ay only with 2xiem al fouids,

() with external load and suppost settiement and rotaithn, The suppoti B settdes
40 mm and end C rotates by 1/100 radians clockwise

Take EI = 800 kN m* throughout.,

90kN
A 30kN/m B ¢
T, % .

U | PERE 2M e o) ]

Ligure 7.6

7.7 ANALYSIS OF PLANE FRAMES WITHOUT SWAY

In general, frames will have lateral displacement. Specific cases in which sway will not
occur are

. A restraint in horizontal direction in the form of fixed, hinge or roller support
is provided on vertical face to prevent horizontal displacement at storey level.

J The plane frame is symmetric about vertical axis with respect to geometry,
flexural rigidity, end conditions and dxsplac,ement of joints and it should be
symmetrically loaded.

When there is no horizontal translation of joints, the sway 8 in horizontal direction is zero.
Deflection in vertical direction at columns is taken as zero because axial deformations in the
columns (vertical members) are neglected Therefore, the only unknowns are rotations at the
supports and joints.

Slope Deflection Method



Indeterminate Example 7.5
Structures -1 Analyse the bent shown in Figure 7.7 (a).
N Solution
Here, there is no horizontal sway as member BC is fixed at C. (fixed hinge)
Thus, degrees of freedom = 2, i.e. 8 and 6 while 8, = 0,

Fixed end moments
FMAB=_—81-J-é=—30x%-_‘-—15kNm FMy, = 15kNm
4 .
FMB(~=—120x§= -~ 60 kN m FMcp = 60kNm
120kN

| c
@ o]
2m
3om—-15) ' ‘*»
2m
A'mirr ' -—L
f—2m —f—2m —

Figure 7.7

Slope deflection equations

2EI (26, +0 2E1 (B, +26
M, = [—(4”—8)]—15; C My, = {—(—"4—”)}15

2% 2E1 (28, + 8,) "2 % 2E1 (85 + 20,)

- Equilibrium equations

At hinge, Mg = 0, giving 65+20, = ——E—(;O— M
At joint B, Mg, + Mp. = 0 gives \
El8;+ 15+—25€1+E16C—60 =0
On simplification, we éet, 308 + 6, = 45 .
El (In

Solution of equations
On solving equations (1) and (II), we get

0y = ;—(} (clockwise) and 8- = :Eglé (anticlockwise)

On substitution these values, final moments are as follows :

2k =@ |
My = |—E—|-15=0
i 1
2E1 Lﬁ) (2% 30)
| My, = " +15 = 45KNm
54 i



1
2% 2E1 (E;J(Z x 30 -45)

4EiEiI)(30 _2x45) |

Here, although A is fixed, incidentally M, ; = 0. Bending moment diagram is shown
in Figure 7.7 (b). '
Note :

In case of plain frames, the bending moment sign convention is as follows :
Bending moments causing inside tension positive, those causing tension in
outer fibers is negative.-

Example 7.6
Analyse the plane frame shown in Figure 7.8 (a).

26 kKN/m
A 8 D

& e e
®‘ . ‘Sm

,—— Sm—%}%—;— Sm ———-'-—~2.5m—-l

{a) 60kN
24 kN/m .
A B IR Me = 75kNm.
al @ @ ¢
@

" Figure7.8

Solution
As CD is overhanging portion, it is statically determinate. Thus,

—24 x2.5

MCD = 2

= — 75 kN m (anticlockwise)

Slope Deflection Methed
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Indeterminate The overhanging loaded cantilever is replaced by a downward load of 60 kN and a
Structures -1 clockwise moment of 75 kN m acting at joint C. :

The equivalent frame is shown in Figure 7.8 (b). The 60 kN force at support C is not
causing any bending moment.

Unknowns : 0,,0p, and 6. as 0;=0

Hence, degrees of freedom = 3

Fixed end moments
FM,, = FM,, = FMg = FMy; = 0
— 2 -
FMBC = —%— = “SOkN m, and FMCB = 50 kN m-
Slope deflection equations
‘ 2Ex 21 (20, + 8p)
AR < 5
2Ex 218, +20 4 EI(1.59
Mg, = Oat200) _FELAD0 _ 5 ppe,
5 5
2Ex21(205+ 0¢) _
M_;C = 5 —50 = 1.6E195+08E19C—50
2EX21(05+200) '
Mg = 5 +50 = 08EI8;+16EIS-+50
2F1(26, + 6;)
MBE = ‘—(—SM = 0.8EIGB
2E(20,.+90
MEB = ‘_‘(—'SE—B) = O4EI OB

Equilibrium equations
Joint A :

Myp = 0; giving 9, = f
Joint B : |
Mg, + Mpc + Mpp = 0
0.8EI(9,+205) +[1.6 E16,+08 EI8,-50]+08FI8; = 0
1.2EI9, + 1.6 EI8, + 0.8EI 0. + 0.8 EI8, = 50

Joint C:

Mgz = 75 KNm

08EIO; + 1.6EIO, + 50 = 75

- 125 (I
0p+20c = AE]
Subtracting Eq. (I1I) from Eq. (I), we get
_ 315, _ 375
8 =4t %= 3m
625, _ —375

56 . 8¢ = 64El’ % = wE



On substitution of these values, we get Slape Deflection Method

MBA = 1.2EIOB = 21'25 = 14.06kNm
S o 25 i
Mg, = 1.6x 2 +0.8x o -50 = -234kNm
75
MBE = 0.8 EIGB = _é— = +9375kNm
75
Mgy = 04E16; = +72 = 469KN m

Bending moment diagram is shown in Figure 7.8 (c). Here, carefully note the sign of
the bending moment. :

SAQ3
Analyse the bent shown in Figure 7.7 (a) of Example 7.5 replacing fixed support A
by a hinged one.
SAQ4
Analyse the frame shown in Figure 7.9. Take EI as constant throughout.
80k
LOKN/m J N 40 kN /m D
A UiEeB  2m am Y E by R EERR IR
13m %; bhm
m
\ G re—LOkN
m
i3
Figure 7.9

7.8 SYMMETRICAL STRUCTURES

When a two-span beam or two-bay plane frame is symmetric with respect to geometry and
loading, the axis of symmetry is passing through central support and hence, the rotation at
this joint is zero. In case of odd number of spans/bays, the axis of symmetry passes through
the mid point of central beamn where there is maximum vertical deflection and hence,
rotation is zero. Therefore, while taking advantage of symmetry, only half the structure is
considered with appropriate boundary condition at midspan/mid point.

Example 7.7
Analyse the single storey two bay portal frame shown in Figure 7.10 (a).
Solution

Here, the degrees of freedom is three, i.e. the rotations 8, 8. and 8,. But due to’

symmetry, we have 6= — 6, and 0. = 0. For analysis, the frame as shown in

Figure 7.10 (b) as half of the given structure is considered and 6= 0. Therefore, 6, :
is the only unknown. 57
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B8 ‘ C
TIH%&HHHIH}J 11!

@ T

1@ D (o8] _ bm
T
iy —o]
{a)
Figure 7.10

Fixed end moments
; P
FMBC=—18xE:':—24kN-m FMCB=+24kNm
Slope deflection equations
2E1(26,48p) . _ 2EI(8, +2 6p)

AB = 4 * BA — 4
. |4EI (205 +86() 4EI (85 +20,)
e = [_.___4 -2 e Ie— +24
Equilibrium condition
Atjoint B ;
MBA +MB('= 0, with 9A= 90= 0
0y + 20, — 24/EI = 0, giving 0, = 8/E]

Final moments

My =

oo

=4kNm; Mg, =8kNm

Mpr=2%x8-~24 = -8 kNm; My=1x8+24 = 32kNm
From the principles of symmetry, for the right half of the structure, we have
Mpp = =4kNm; Mpe = -8kNm; '
Mp- = 8kNm; Mg, = -32kNm;
For practise, you should draw the bending moment diagram.

SAQS
Analyse the portal frame as shown in Figure 7.11, taking advantage of symmetry.
Take EI as constant throughout.

60kN 60 kN

KEN: < 0§

do o L
e ot —

Figure 7.11
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SAQ6 Slope Deflection Method

Analyse the portal frame shown in Figure 7.12 (a).

B ikN/m C B

T

O QO wm
I »JL‘}JL i
}-—Ln———anl
la) (b)
Figure 7.12

7.9 ANALYSIS OF PLANE FRAMES WITH SWAY

When the portal frame is likely to sway, i.e it will displace the vertical members in the
horizontal direction, it cannot be neglected. In such a case, it is to be included for column
memberss in slope deflection equations much in the same way as support settiements are
considered for beamn elements. The plane frames sway in the following situations :

] Unsymmetrical frame even though the load is symmetrical.

. Unsymmetrical loading on the plane frame (even though the frame is
geometrically symmetrical).

. Different end conditions of columns and unequal column heights.
] The flexural rigidity EI is not symmetric about axis of symmetry.
. Horizontal loading on columns,

. Settlement of supports.

) Any combination of above,

7.9.1 Storey-shear Equation

As discussed earlier, the equilibrium equations consist of equilibrium of moments at joints
in case of frame without sway. If there is sway, the additional equation is furnished by -
equilibrium of horizontal shear. This can be explained by the following illustration.

Consider the single-storey, doublé-bay portal frame subjected to horizontal loads as shown
in Figure 7.13 (a). The free body diagrams of three columns are shown in Figure 7.13 (b).

The horizontal reactive forces at each ends of column members will be due to ;
. moments at column ends, and '

. horizontal external forces.

End moments dre assumed clockwise to be positive. The corresponding couple, will be
formed due to reactive forces, which is anticlockwise. Therefore, H,, H. and H are

assumed acting towards right while Hg, H, and H towards left.

Although the reactive forces are transferred at the top of the columns (i.e. at B, D, and F),
those are rigid end, not restrained in‘horizontal direction. Therefore, sway will occur. Let
the propping force (P) preventing the sway be assumed acting towards left. This can be
predicted in following two ways :

. since Hy, Hy, and Hy are towards left, and

. from the deflected shape at top as tension side is-on left.



Indeterminate The additional equilibrium condition is available from summation of horizontal forces as
Structures -1 ze10 (), F, = 0) for entire frame,

Considering forces acting towards right as positive, we get
Hi+H.+Hg~P+wxL, =0 ‘ M

In above equation, H,, H- and H are again unknowns. Hence, they are to be related to end
moments.

Let us consider equilibrium of each column to find horizontal reactions at bottom.
Their free body diagrams are shown in Figure 7.13 (b).

B .
) D F p
Ly L L
®° H1 ] : 1 ;
1 c? : 3 (a)
~=H¢
AWy £
MBA Mpc Mgr
_ )
bt (X,
Lo L
o H ’ (b
B Ve |
ALHA Mcp EHe
L/MAB
Figure 7.13 : Frames with Sway
For column AB : Taking moment about B,
wL?
2
w
Mg+ Mp, - 'zﬁ
H, = 1
A Ll ( )
' Mep + M I
Similarly, for column CD : H, = —C—D——LI——DC- @
Mg .
for column EF : Hy = I (as Mgz = 0 due to hinge at E) av)
From Egs. (I), (I}, (IIT) and (IV), the shear equation is
M M wL%
M= Mo+ My M,
: cD DC FE
+ + -P+wL =0 V)
2 L, L, '
If there are n storeys, n such shear equations will be available. This is illustrated in
Examples 7.8 and 7.9.

7.9.2 Applications
Example 7.8

Analyse the plane frame shown in Figure 7.14 (a).



Solution Slope Deflection Method

Here, the degrees of freedom is three, namely rotations 85, 6, and unknown

(horizontal) sway &. Horizontal displacement of roller C is also horizontal
displacement of end B, as the axial deformation (of beam BC) is neglected.

120kN : 1
‘ Mpa Vs
7 c% ,Z;T Clg—
m 2m
30kN—.@ » JOKN ———
Zm
2m ( A u
. R A
A 4
bo— 2m —fo— 2m—] )
[a)
4§ ~lsf,

60 (wc) ' W*’A td)

Figure 7.14

Slope deflection equations
These equations are modified for column AB only.

MAB = 2_‘11;—1' [29A+OH+§4§]_ 15

MBA = % [(‘)A-fj293+378}+ 15

(Here, 8, = 0)

Mpe = 2%29 |:2eﬂ+ ec] - 60

Mcp = %42—11 [e,,+2ec] + 60

Equilibrium conditions

Joint C,
Mep=0 gives 0 + 26, = =2 y
EI :
Joint B,
Mg, + Mg =0
or ‘(EIBB+(%><E18]+15+2E103+E16C—60= 0

16



Indeterminate
Structures - |

360 o

It gives 240,+80.+38 = £l

Shear condition for column AB is additibnally required, which is illustrated in Figure
7.14 (¢). : »
Taking moments about B

Mypg—-H,x4-30x2+Mp, =0

2E1 s
By = 4 - | 4

where 6, =0.
As H = 0, and considering Z F, = Ofor entire bent, we get

H,+30=0, H, = -30kN,i.e. leftward.
Putting this value in expression of H, in terms of 0, and 0

2EI 36
60~ (30 x4) = 3 X (36,,+—2-J
- 80
Therefore, 205+ = £l a1
Using elimination technique,

Equation & Operation Op El Oc El S El Constant
{O 1 2 0 - 60
an 24 8 3 + 360
(I 2 0 1 - 80
(IV)= () - 4 x () 20 0 3 600
V)=(IV) -3 x(IID 14 0 0 840

On solving Egs. (IV) and (V), we get
+ 60 .
0 = £l (clockwise)
. . . . - 60 . .
On putting this value in Eq. (I), 0, = & (anticlockwise)
N o =200 .
On putting these values in Eq. (III) o= I (rightward)
On substitution of these values in slope deflection equations, we get
M,y=—-60kNm; Mg, =0

Figure 7.14 (c) gives bendihg moment diagram (BMD) and Figure 7.14 (d) gives the
deflected shape (elastic curve) of the frame.

Example 7.9

Analyse the plane frame given in Figure 7.15 (a). When there is a clockwise
rotational slip of 0.002 radians and a vertical downward displacement of 12 mm
occuring at joint A. Take E = 200 GPa, [ = 400 x 10° mm*

Solution
Here, E =200 GPa = 200 x 10” N/m?,
=400 x 10° mm* = 400 x 10° x 107"? m*
‘Let us consider EI in kN m?

™
' EI = 200 x 10° x 400 x 10° x (107%)* Nm”

o2 - = 80x 10° Nm? = 80 x 10° kKN m?
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(a)

Degree of freedom

Here, the degrees of freedom are three, namely 0, 0, and sway  assumed towards

C 895
)
@ Sm
A
2028
L 4
e e (v)
Figure 7.15

right. The sway 8 has negative sign since it causes anticlockwise fixing moments in

columns AB and DC.

We have, 6, = 0.002 radian clockwise, 8, = 0; vertical settlement at B with respect

to A= 12 mm = 0.012 m. The settlement, & is positive for member BC as it causes
clockwise fixing moments at its ends.

Slope deflection equations

2E x 21 [2(-)A+(-)B—?J
My = = EI (85— 0.75 6 + 0.004)
2E><21[9A+2e,,—?} ,
My, = = EI(205;-0.758 +0.002) -
205+ 0+ [——3 x%mzj
2E x 31 (85 + 28, + 0.006)
; Mcp = ‘
2EI |20, - ; '
Mpp = 5 = EI1(0.4 6--0.24 9)

Equilibrium conditions
Joint B

Mp, + Mpc = 0

46, +6-+0008-0758 =0 o

Joint C

Mcp + Mcp = 0

0,+2.80,-0.24 5+0.006 = 0 -

~ Shear condition

H, + Hp = 0 (no horizontal load)

Slope Deflection Method

63 .



Indeterminate . M,y + My, Mcp + Mpe

Structures - 1 Now, HA = f’ HD = 5
(Myp + Mp,) Mcp + Mpe)
2 + 5 =0

" Onsubstitution, 565+1.606,—3.143+0.001 =0 am

On solving above equaions (I), (II) and (III), we get
8 = —0.0002525 m (to left)
¢

—0.001573 radian  (anticlockwise)

0, = —0.001654 radian (anticlockwise)
Final moments o '
EI (85— 0.75 3 + 0.004)

MAB =
= 80 x 10° (- 0.001654 + 0.0001893 + 0.004)
= 2028kNm
Similarly,
Mp,=—-8.5kNm
Mp=—96kNm Mp=4549KkNm
Figure 7.15 (b) shows the bending moment diagram on tension side.
SAQ7
Analyse the plane frame shown in Figure 7.16. Take EI as constant for all the
members.
90kN ) C
AL B : I' ® 1
m m ® s
. 152 (D
m Im l D l
[ﬂ)ﬁrr Q’J
. b
£ e
T
Figure 7.16 Figure 7.17
SAQ 8

Analyse the portal frame shown in Figure 7.17 above. There is rotational slip of
0.002 radian clockwise and vertical settlement of 10 mm at joint D,

Take E = 200 kN/mm? and 7 = 3 x 10° mm*.



7. 10 SUMMA RY - ’ Slope Deflection Method

Slope deflection equations
The slope detlection equations for a member can be expressed as

2E1 ’
and
8 2E

whefé FM, ; and FMp, are fixed 2nd moments due to Joads. If there is no
lateral translation, 8 = 0 in the above expression. 6, and 0 are rotations at

ends A and B respectively. Rotation is zero for fixed end. Moment is zero for a
hinged or roller support.
Equilibrium equation
(a) If there are m members meeting at a joint then algebraic sum of moments
at a joint 1s zero. Thus, equilibrium condition for joint  is

m

Y M =0

i=1

(b) For any plane frame, the algebraic sum of horizontal reactions at supports
-and external horizontal loads on columns must be equal to zero. This is
known as shear condition. Shear equations are required to be tormed, in
addition to equilibrium equations tor tnoments at joints, in case of plane
frames with sway.

The solution of equilibrium equations will give displacements or primary
unknowns. Final moments are then obtained by substituting these
displacements into slope deflection équations.

When the frame is symmetrical with respect to geometry and loading, the
advantage of symmetry is taken by selecting half the structure for analysis
with appropriate boundary condition.

Causes of side sway for plane frames are as follows :
(a) unsyinmetrical loading,

(b) geometric asymmetry of frame such as ditferent end conditions, or
difterent EI, or difterent heights of columns,

(¢) horizontal loading, and
(d) settlement of supports, and any combination of these.

7.11 KEY WORDS

Initial Fixed End : Moments at the ends of restrained member due to loads or
Moments settlement ot support.

Sinking of Support or : Lateral displacement of one end of the member with
Settlement of Support respect to the other. This causes moments at both ends of

‘Side Sway

a member.

Lateral displacement of end of the column, which induces
moments at both ends depending upon boundary condition.

Slope Deflectlon Equations :  Equations relating final moments at end of member with

initial moments due to load and displacements, i.e.
rotations at two ends of members and translation of the
supports. «

Equilibrium Equations s Algebraic sum of moments at a joint equals to zero should

be satisfied which is a statical condition of equilibrium. 65



Indeterminate Shear Condition . This is an additional condition to compute unknowns in
Structures - I case of sway which states that summation of horizontal
‘ forces, i.e. horizontal reactions at supports and lateral
loads on any particular column level is zero.

7.12 ANSWERS TO SAQs

SAQ1
Unknowns : 65 and 9.

Equations : 705 + 26, = %(} and 20,+76, =0

., 14 . ‘ 4 . .
Displacements : 8, = I (clockwise) and 6, = — El (anticlockwise)
End moments : M., ,;=7kNm Mg, =14 kN m= - My,

SAQ2

Unknowns : 05 in both cases is —ZEQI (clockwise) [it has become inéidentally].

End moments (all hogging and in kN m) are as given below :
M, My M,
Case (a) 307 60 50
Case(b) 42 48 66
SAQ3
Unknowns 6, 0z and 0,
Repeat the procedure similar to Example 7.6.

0,=0,0; = 30 and 0, = - ﬁcan be obtained
: EI _ 1
Incidentally, the bending moment diagram will be same as Figure 7.7 (b).
SAQ4 ' ‘ '
10.303
0, = £l and
4849
%= "g

End moments are shown in bending moment diagram in Figure 7.18.

Figure 7.18

SAQ5

Unknowns :8p = 0 = —2,—(;



SAQ6 Slope Deflection Method
Here, the degrees of freedom is two, i.e. 8 p and 0, but6;=0.. 4

The modified half structure is shown in Figure 7.12 (b). The unknown displacements
will be 6, and deflection at centre line. Hence, in this case there is no advantage in

considering symmetry. So, let us analyse the whole structure and take on symmetry
as e B = OC.

Fixed end moments _
FM_p =24 kKN m = — FMp. (as found in Example 7.1)

Slope deflection equations

As 0, =06,=0
We get Myp = ZEI:E' = EIZGB
My, = 2EI 4(93) - EI 98
Similarly, My = EI6y — 24
Equilibrium conditions ‘
| At joint B, Mg, +Mp=0
, El0g+(EI6p-24) = 0
Thus, Elo, = 12 ’
Final moments

M,;=6kNm Mg =12kNm
Mpe=-12kNm Mg=12kNm
Myp=-12kNm M,.=—6kNm
SAQ7 o
Unknowns : 85, 6 and 8 (horizontal displacements of B.and C)
Displacements : EI 05 =-32.54 kN m’
EI8,=5.092kN m’
EIs =-2335kNm’
wheré Elis in kN m? and 8, & 6,- are in radians.
End moments (in kN m) (clockwise as positive)

M,p=0 Mg, =90
Mpe= —60 M= -2236
Mg, = -30 Mpp=249
Mqz=122.36 Mg = 18.96.
SAQS ;
Moments in kN m are as follows :

‘ M,p=—275.091 Mg, =42.652 = —Mye

Mpc =87.28 Mc,= -6844 = -Mp

67



