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7.1 INTRODUCTION 

This unit is useful to analyse indeterminate structures, like continuous beams 6t plane 
frames. This method was presented by Prof. G. A. Maney in 19 15 as a general method for 
analysis of rigid-jointed structures. The unknowns in this method are degrees of freedom, 
i.e. displacements. Therefore, it is one of the displacement metkods. It is a classical method 
on which the moment distribution method, Kani's method and matrix stiffness method are 
based. The prerequisite for this is the knowledge of fixed end ntornents computation. 

Objectives 
After studying this unit, you should be able to carry out analysis of continuous beams and 
rigid-jointed plane frames. This involves, 

formulation of equilibrium equauons, 

computation of primary unknowns, i.e. displacements by solving linear 
simultaneous equations, 

computation of final member end moments at joints, and 

drawing shear force (SF) and bending moment (BM) diagrams. 

7.2 BASIC CONCEPTS 

7.2.1 Sign Convention 
Clockwise moments and clockwise rotations are considered as positive. 

Here, we must recognise the distinction between the words, "monlent" and "bending 
moment". The former is a physical concept and the sign depends upon whether it is 
clockwise (positive) or anti-clockwise (negative). The latter is an internal stress resultant of 
a structural member, and is assumed positive when sagging or considered negative when 
hogging. Thus, a positive (clockwise) moment at the right hand end of a beam causes 
negative (hogging) bending moment there; whereas at the left hand, it causes a positive 
(sagging) bending moment. This must be clearly kept in mind when writing down the 
equations, and while drawing bending moment diagrams (BMDs). 



7.2.2 Fixed End Actions 
Any span of a beam with both ends fixed is subjected to different types of loading. The 
formulae for fixed end actions are shown in Table 7.1, which are listed as case nos. 1 to 6. 
Case nos. 7 to 9 give fixed end actions produced due to either rotation or lateral translation 
of joint. The fixed end moments are useful in formulation of slope deflection equations. 

We recall that these fixed end moments are derived by method of consistent deformation. 
The displacements are computed by using moment area theorem or Macaulay's method. 

The calculation of fixed end moments is required in various units of this course-topic. You 
are advised to remember simple cases by heart and practise the use of various formulae 
given in the Table 7.1. 



7.2.3 Rotational Stiffness 
Consider a fixed bean1 A B  of span L and flexural rigidity EI as shown in Figure 7.1 (c) in 
which end A is rotateG by 8,. 

The nlonlent induced at end A is 

0, 
MAB = 4 EI y = k ,  B, (Refer Table 7.1, Case 8) 

where k, = 4EIIL is called rotational stiffness which cdm also be defined as the moment 
required at A to produce unit rotation at A. 

And, the moment induced at B is 

0, 
MBA = 2 EI - = kBA 0, (Refer Table 7.1, Case 8) 

L 

where k,-can be defined as the moment prcxiuced at B due to the application of unit rotation 
at A. 

7.2.4 Lateral Displacement Factor . 

Consider a fixed bean1 A B  of span L and flexural rigidity EI as shown in Figure 7.1 (e). End 
A is displaced lateraly by 6 downward with respect to end B, keeping both ends restrained 
against rotation. Due to this displacement 6. , 

6 
MAR = 6 EI - = kA6 x 6 (Refer Table 7. I ,  Case 7) 

L~ 

where k,, = ~ E I I L ~  is called lateral displacement factor which can be defined as the 
moment produced at A due to unit lateral displacement at A with respect to B. 

6 
Similarly, MBA = 6 EI - = kR x 6 

L2 

6 EI 
Therefore, kA = kR6 = - 

L~ 

where k,, is the moment produced at A due to unit displacement at A and k,, is the moment 
produced at B due to unit displacement at A. 

7.3 STEPS FOR ANALYSIS 

(a) Cotnyutation offiixc.d end nronrents : The formulae for fixed end actions for 
various load cases are given in Table 7.1. Vie sign convention followed is that 
for moments, i.e. clockwise - positive and anticlockwise - negative. 

(b) Relate menrber end mosrenls to joint displncenrents : The end nloments are as 
follows (derived in Section 7.4) : 

\ 
Compute the end moments for each member using the expressions. These are 
also known as slope deflection equations. 

(c) Formulate equilibriuni equations : These are obtained by making algebraic 
sum of moments at each joint as zero. In case of frames with sway, additional 
equations are obtained considering shear condition. Details are explained in 
Sections 7.5 and 7.9.1. 

(d) Solve the equations : This will give displacen~ents (primary unknowns), i.e. 
0,, OR, 6 etc. 

(e) Back-substitution : In the expressions for end nloments formed in step (b), 
substitute values of luiown displacements as obtained in step (d). This gives 
final.end moments for each member. From this, the support reactions can also 
be calculated. 

c t l  Sketch shear force diaeram (SFD) and bending moment diaeram (BMD). 

I 
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7.4 SLOPE DEFLECTION EQUATION 

The equation relates 'rnertli~er end moments' to 'joint displacertlents'. ?he relation is derived 
as follows. Let us consider member A B  of any plane frame or beam as shown in Figure 7.1 
(a). A and B itre ends of the member. Due to given loading, end A laterally translates 
downward by 6 with respect to end B and rotation at A and B are 0, and OB respectively. We 
observe that Figure 7.1 (a) can be considered as superposition of four figures, i.e. Figures 
7.1 (b) to (e). 

\ 
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Figure 7.1 

In Figure 7.1 (b), A and B are restrained and FMAB & FM, are resulting fixed end moments 
(due to the load action). The Table 7.1 gives the fixed end moments due to different actions 
or support settlementtrotation etc. 

In Figure 7.1 (c), end A is rotated by clockwise while B is kept restrained. Due to this 
rotation 0,. the end moments are MA, = k,  8, = 4EI 8, / L  and M,, = k ,  0,  = 2EI 8, / L  as 
explained in Section 7.2.3. 

In Figure 7.1 (d), end B is rotated by 8, while A is kept restrained. Due to this rotation 8,, 
the end moments are MAE = kAB 0,  = 2EI 0, lL and M, = k,, 0, = 4EI 0,  lL. 

In Figure 7.l(e), end A settles down by 8 with respect to end B while both ends are 
restrained against rotation. Due to this settlement, the end moments will be 

M, = kA8.6 = MA, = kBs.6 = ( 6 ~ 1 6 4 , ~ )  at both ends A and B as explained in 
Section 7.2.4. 

The end moments MAD and M, are the sumation of the above four cases as shown in 
Figures 7.1 (b) to (e). The final moments at ends A and B respectively are as follows : 



which can be remembered as 
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(7.1) 

When there is no lateral translation 6, 

I Note : Here, it should be noted that a lateral translation 6 which causes the beam to 
rotate anti-clockwise as shown in Figure 7.1 (e), is considered positive. Since, it 
induces clockwise (positive) end moments, for the opposite case 6 will have to 

I be taken as negative. ! 

I 7.5 EQUILIBRIUM EQUATIONS 
I In this method, displacements, i.e. rotation and translations at the joints are the unknowns. 

The unknown displacements are also termed a:; degrees of freedom or degree of kinematic 
indeterminacy. If there are n degrees of freedom (i.e. unknowns) for a given structure, n 
equations are required to be formulated using equilibrium conditions. 

The equilibrium equations for end moments of all members meeting at a joint can be 
. obtained as explained in the following paragraphs. 

I If there are n number of joints in any structure, for each joint the following procedure is 
adopted. Letus consider joint i, the sumation of all member end moments for all members 
meeting at a joint must be equal to external applied moment at that joint 

j = m  
I At joint i, C M ~  = Mi (7.7) 

j =  1 

where, 

Mi = external moment applied at i, 

j = far ends for all members with j = 1 to m, and 

m = number of members meeting at joint i. Usually, external moment applied 
at joints are zero. In such a case 

Similar equations are formed for each joint. 

7.6 ANALYSIS OF CONTINUOUS BEAMS 

As slope deflection method is a displacement method the unknowns are displacements. 
Axial deformations are neglected in this method and lateral displacement (if any) are known 
values, in ca@.~f continuous beams. Therefore, the unknown degree of freedom are only 



rotation of joints. Recall the steps for analysis. Here the slope deflection equations are 
formed for each span separatelf. Then at each joint, moment equilibrium conditions are 
applied to form linear simultaneous equations having unknown rotations. By solving these 
equations, the unknown rotations are found out. 

Example 7.1 

Analyse the continuous beam shown in Figure 7.2 (a). 

'5 I b l  

109 

Figure 7.2 

Solution 

Unknowns : Slope at A, i.e 0, and slope at B, i.e. BB 

Step 1 : Fixed end momenfs 

For span AB : (due to unifonnely distributed load) 

For span BC : FMBc and FM,  are due to part u.d.1 and due to point load. Due to 
point load 

For computing fixed end moments due to part u.d.1, let us refer Table 7.1 (Case 5) 
and applying method of superposition for downward load for a = 6 m and upward 
load for a' = 4 m 



Step 2 : Relate displacements (slopes) to end rtlottients 

Step 3 : Equilibrium equations 

As Cis fixed end, 8, = 0. 

Joint A : At hinged joint, MAB = 0 

El (28, + 8,) 
Hence, [ ] - 72 = 0 (from Step 2) 

Joint B:  M, + M,,= 0 

Thus, 

Step 4 : Solution of equations 

On solving the two equations (I) and (II), we get 

- I 134 8 - - ositive (indicates clockwise rotation) 
A -  EI 

t - 52 
8, = - negative (indicates anticlockwise rotation) 

El 

Step 5 : Final moments (can be obtained by substituting the values of 8, and 8, in 
Step 2 above). 

2 ~ 1 3 4 - 5 2 ) - ~ ~  = 
MAB = 3 

MBA = 
- 

52) + 72 = 82 kN m (dockwise moment) 
3 

(- - 56 = - 82 kN m (anticlmkwise moment) M~~ = 4 

(- 52) 
MCB = 4 

+ 122 = 109 kN m (clockwise moment) 

Step 6 : Bending moment dingrum 

Let us recall here that clockwise moment is considered positive. From previous step, 
mark the final end moments for each member with appropriate sign, i.e. clockwise as 
positive or anticlockwise as negative. These are shown in Figure 7.2 (b). 

At this stage, we revert back to our usual bending rnornents sign conventions, i.e. 
sagging bending moment as positiv5 and hogging bending moment as negative as 
given in Section 7.2.1. &ow the bending nloment diagram is easily drawn which is 
shown in Figure 7.2 (c). Note that the ordinates for BM are drawn on the side where 
bending tensio~~ is developed. 

Slope Denection Method 
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SAQ 1 
Analyst: the continuous hcanl shown in Figurt: 7.3. Take iil cconstrult throughout. 

Example 7.2 

For continuous healn ABC shown in Figure 7.4 (a), if support B settles by 4 mm, find 
bending moment at A, B and C.  

~ & e  El as constant = 36 x lo3 kN n~'. 

Figure 7.4 

Solution 

Unknowns : Slopc at B, i.e. 8, is the only unlu~own: since 8,  = ec = 0 

Fixed end momjnts 

FM,, = FMsA = FMBC = FM, = 0 (as 110 external load acling on beam) 

6 for AB = - 4 rnm = - 0.004 n~ (induces anticlockwise moments) 

6 for BC = 4 mm = 0.004 m (induces c!ockwise moments) 

End moments & slopes relation 

Span AB : 0, = 0 i 
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Equilibrium equation 

At joint B : MBA + MBc = 0 

giving t)B = 0.25 x 10-hadims (clockwise) 

On substituting back in the Eqs. (I) to (IV) and putting EI = 36 x lo3 kN m2, we get. 

~ i n a l  moments 

MAE = - 21 kN m (anticlockwise) ; MBA = - 18 kN m (anticlockwise) 

MBc = 18 kN m (clockwise) ; McB = 14 kN m (clockwise) 

Bending mornenf diagram 

Figure 7.4 (b) is free body diagram showing final moments acting at the joints and 
Figure 7.4 (c)  shows bending moment diagram (BMD). 

You must take note how the clockwiselmti-clockwise sign of the moments have be 
converted into sagginglhogging signs for the bending moment. 

Example 7.3 

Attempt Example 7.1 with same loading, if support B sinks by 8 mm and 
EI = 72 x 10" m2 uniform thrc~ughout. 

Solution 

Unknowns : 8, and OB as fixed end slope 0,. = 0 

Span dB : right support B settles, 6 = - 0.008 m 

Slope deflection equations are as fi~llows : 

Span BC : left support B settles. 6 = 0.008 m 

Slope deflection equations are as follows : 

- 2E1 [28, + 0.0031 - 56 ' (since OC = 0) 
8 

Equilibrium equations 

JointA: MAB=O 

E I ( 2 8 A + 8 B ) - o : ~ E I - 7 2 ~ 3  = 0 

On putting values, 

EI (20, + 8,) = 0.004 x 72 x lo3 + 72 x 3 



Joint I3 : M', + M,,. = 0 

Thus, we get 

On substituting El 'I 72 x 1 0 % ~  m2, we get 

0 1 1  simplification, it gives 
156 

2 %  + 7 0 ,  = 

Solution of equations (I) and (11) gives 

- 58 
0 ,  = - 

28 1 
and 0, = 

El 

011 subsdlriting tliese values in the moment equations, we get final moments 

Example 7.4 

Analyse the continuous he;~m shown in Figure 7.5 (a). El is constant throughout. 

Figure 7.5 

Solution 

Unknowns : 8 ,  only as 8, = 8 ,  = 0 

Fixed end rnortlents 

As there are no transverse load on the beam, we have 

FMAA = FMRA = FMRC = FMCR = 0 



Member end moment and slope relation 

For span AB 

For span BC 

Equilibrium equntion 

M, + M,, = external moment at B = 70 kN m (Positive, since clockwise) 

Final monzents (after back substitution) 

Figure 7.5 (b) is a free body diagram showing moment? at joints and Figure 7.5 (c) 
shows bending moment diagram drawn on tension side. Figure 7.5 (d) shows 
deflected shape of the beam. 

Again, you are advised to note the sign of all the joint rotation, moments and bending 
moments. 

SAQ 2 
Analyst: [he c(?rl[iuui,us b~illr! sllonn In Figure; 7,!> l(;r i;li i>nlv il/lgi i'xt:.lr?!;i! B b , i i i l c < ,  

(h') with exlcnlal !(,ad anrj supper[ xe{[icnli.nt ;;!ld rt\r;tll:\n. 'T'il~! \g]>f'i,li 3 \rs!L?c'; 

10 :n~n and cncl C rotates by l/l!'!O r ; ~ J i ; u ~ c  ciochwise 

In general, frames will have lateral displacement. Specific cases in which sway will not 
occur are 

A restraint in horizontal direction in the form of fixed, hinge or roller support 
is provided on vertical face to prevent horizontal displacement at storey level. ' 

The plane frame is symmetric about vertical axis with respect to geometry, 
flexural rigidity, end conditions and displacement of joints and it should be 
symmetrically loaded. 

When there is no horizontal translation of joints, the sway 6 in horizontal direction is zero. 
Deflection in vertical direction at co1,urnns is taken as zero because axial deformations in the 
columns (vertical members) are neglected. Therefore, the only unknowns are rotations at the 
supports and joints. 

Slope Deflection MeiLod 



Indeterminate 
Structures 1 

Example 7.5 

Analyse the bent shown in Figure 7.7 (a). 

Solution 

Here, there is no horizontal sway as member BC is fixed at C. (fixed hinge) 

Thus, degrees of freedom = 2, i.e. OB and 8 ,  while BA = 0, 

Fixed end moments 

lo1 

Figure 7.7 

Slope deflection equations 

L J 

Equilibrium equations 
-60 

At hinge, MCB = 0. giving 0, + 2 8 ,  = 

At joint B, MBA + MBc = 0 gives 

On simplification, we get, 
45 

3 0 , + 8  - -  - El 
Solution of equations 

On solving equations (I) and (II), we get 

30 
- EI 

- 45 (anticlockwise) 0 - ' (clockwise) and 8, = 

On substitution these values, final moments are as follows 



Slope Deflection Methocl 

Here, although A is fixed, incidentally MA, = 0. Bending moment diagram is shown 
inFigure7.7(b). 

Note : 

In case of plain frames, the bending moment sign convention is as follows : 
Bending moments causing inside tension p s i  tive, those causing tension in 
outer fibers is negative. . 

Example 7.6 

Analyse the plane frame shown in Figure 7.8 (a). 

Figure 7.8 

Solution 

As CD is overh'mging portion, it is statically determinate. Thus, 

- 2 4 ~ 2 . 5 ~  
M c ~  = 2  = - 75 kN m (anticlockwise) 



ldetenninate 
Structures - I 

The overhanging loaded cantilever is replaced by a downward load of 60 kN and a 
clockwise moment of 75 kN m acting at joint C. 

The equivalent frame is shown in Figure 7.8 (b). The 60 kN force at support C is not 
causing any bending moment. 

Unknowns : eA, 8,, and Oc as OE= 0 

Hence, degrees of freedom = 3 

Fixed end moments 

FMAR = FMRA = FMRE = FMEB = O 

FMBc = - 2 4 x P  = -50 kNm, and FMcB = 50 k N m  
12 

Slope deflection equations 

Equilibrium equations 

Joint A : 

- OB 
M,, = 0; giving 8,  = 2 

Joint B : 

MBA + MBc + MBE = 0 

0.8 EI (t), + 28,) + [1.6 El 8, + 0.8 EI 8,  - 501 + 0.8 8 ,  = 0 

Joint C : 

MCB = 75 kN m 

Subtracting Eq. (11) from Eq. (I), we get 

- 375 625 0 - - 8 , =  -. 
64EI' A -  MEI 



On substitution of these values, we get 

225 = 14.06 kN m MBA = 1.2 El 8, = - 
16 

Bending moment diagram is shown in Figure 7.8 (c). Here, carefully note the sign of 
the bending moment. 

SAQ 3 
Analyse the bent shown in Figure 7.7 (a) of Example 7.5 replacing fixed support A 
by a hinged one. 

SAQ 4 
Analyse the frame shown in Figure 7.9. Take El as corlstant throughout. 

Figure 7.9 

7.8 SYMMETRICAL STRUCTURES - 

When a two-span beam or two-bay plane frame is symmetric with respect to geometry and 
loading, the axis of symmetry is passing through central support and hence, the rotation at 
this joint is zero. In case of odd number of spanslbays, the axis of symmetry passes through 
the mid point of central beam where there is maximum vertical deflection and hence, 
rotation is zero. Therefore, while taking advantage of symmetry, only half the structure is 
considered with appropriate boundary cc>ndition at tnidspdmid point. 

Example 7.7 

Analyse the single storey two bay portal frame shown in Figure 7.10 (a). 
Solution 

Here, the degrees of freedom is three, i.e. the rot;ltions 0,. Bc and 8,. But due to 
syrmnetry, we have 0,' - 8,. and Oc = 0. For analysis, the frame as shown in 
Figure 7.10 (b) as half of the given structure is considered and Oc= 0. Therefore, 8, 

Slope Delkction Method 

is the only unknown. 



Indeterminate 
Stroetures - I 

58 

k-bm+~m-I + 4 a 4  

( a )  t b l  

Rgure 7.10 

Fined end moments 

Slope deflection equations 

Equilibrium condition 

At joint B : 

Mm+MBc=O, withe,,= 0,= 0 

0, + 20, - 24lEI = 0, giving 0, = 81EI 

Final moments 

From the principles of symmetry, for the right half of the structure, we have 

For practise, you should draw the bending moment diagram. 

SAQ 5 
Analyse the portal frame as show11 in Figure 7.11,  t'aking advantage of symmetry. 
Take EI as constant throughout. 



SAQ 6 
Analyse the portal frame show11 in Figure 7.12 (a). 

7.9 ANALYSIS OF PLANE FRAMES WITH SWAY 

When the portal frame is likely to sway, i.e it will displace the vertical members in the 
horizontal direction, it cannot be neglected. In such a case, it is to be included for column 
members in slope deflection equations much in the same way as support seltlements are 
considered for beam elements. The plane frames sway in the following situations : 

Unsymmetrical frame even though t$e load is symmetrical. 

Unsymmetrical loading on the plane frame (even though the frame is 
geomewically symmetrical). 

Different end conditions of columns and unequal column heights. 

The flexural rigidity El is not syminetric about axis of symmetry. 

Horizontal loading on columns. 

Settlement of supports. 

Any combination of above. 

7.9.1 Storey-s hear Equation 
As discussed earlier, the equilibrium equations consist of equilibrium of moments at joints 
in case of frame without sway. If there is sway, the additional equation is furnished by 
equilibrium of horizontal shear. This can be explained by the following illustration. 

Consider the single-storey, double-bay portal frame subjected to horizontal loads as shown 
in Figure 7.13 (a). The free body diagrams of three columns are shown in Figure 7.13 (b). 

The horizontal reactive forces at each ends of column members will be due to : 

moments at column ends, and 

horizontal external forces. 
End moments ace assumed clockwise to be positive. The corresponding couple, will be 
formed due to reactive forces, which is anticlockwise. Therefore, HA, Hc and HE are 
assumed acting towards right while HB, H, and HF towards left. 

Although the reactive forces are transferred at the top of the columns (i.e. at B, D, and F), 
those are rigid end, not restrained in horizontal direction. Therefore, sway will occur. Let 
the propping force (P) preventing the sway be assumed acting towards left. This can be 
predicted in following two ways : 

since H,, HD and HF are towards left, and 

from the deflected shape at top as tension side is on left. 

Slope Deflection Method 



The additional equilibrium condition is available from summation of horizontal forces as 
zero (x Fx = 0) for entire frame. 

Considering forces acting towards right as positive, we get 

H A + H c + H E - P + w x L 1  = 0 (1) 

In above equation, HA, Hc and HE are again unknowns. Hence, they are to be related to end 
moments. 

Let us consider equilibrium of each column to frnd horizontal reactions at bottom. 

Their free body diagrams are shown in Figwe 7.13 (b). 

For 

Figure 7.13 : Frames with Sway 

column AB : Taking moment about B, 

Similarly, for column CD : Hc = M~~ + MDC 

r, 
MF for column EF : HE = - (as M ,  = 0 due to hinge at E )  
5 

From Eqs. (I), (II), (111) and (IV), the shear equation is 

If there are n storeys, n such shear equations will be available. 'Ikis is illustrated in 
Examples 7.8 and 7.9. 

7.9.2 Applications 
Example 7.8 

Analyse the plane frame shown in Figure 7.14 (a). 



Slope Deflection Method 

Here, the degrees of frdedom is three, namely rotations 0,. 0,. and unknown 
(horizontal) sway 6. Horizontal displacement of roller C is also horizontal 
displacement of end B, as the axial deformation (of beam BC) is neglected. 

+2m + 2 . 4  
l a )  

Figure 7.14 

Slope deflection equations 

These equations are modified for column AB only. 

I d )  ' 

(Here, 0, = 0) 

Equilibrium conditions 

Joint C, 

McR = 0 gives - 60 0, + 2 0 ,  = - 
El 

Joint B, 

Mm + MBc = 0 



Shear condition for column AB is additionally required, which is illustrated in Figure 
7.14 (c). 

Taking moments about B 

where 0, = 0. 

As H,. = 0, and considering Fx = 0 for entire bent, we get 

HA + 30 = 0, HA = -30 kN, i.e. leftward. 

Putting this value in expression of HA in terms of 8,  and 8, 

Therefore, 
- 80 20, + 6 = - 
EI 

Using elimination technique, 

Equation & Operation OD E l  0c E l  6 E l  Constant 

(1) 1 2 0 - 60 
(11) 24 8 3 + 360 
(In) 2 0 I - 80 
(IV) = (n) - 4 x (I) 20 0 3 600 
(V) = (W)  - 3 X (In) 14 0 0 840 

L 

011 solving Eys. (IV) and (V), we get 

+ 60 
8, = (clockwise) 

- 
On putting this value in Eq. (I), 0 - -  6o (anticlockwise) 

C -  EI 

On putting these values in G. (111) 6 = -  - 2" (rightward) 
EI 

On substitution of tllese values in slope detlection equations, we get 

MAB = - 60 kN m; MBA = 0 
MBc = (2x60)-60-60 = 0: Mcs = (60 - 2 X 60) + 60 = 0 

Figure 7.14 (c) gives bending moment diagram (BMD) and Figure 7.14 (d) gives the 
deflected shape (elastic curve) of the frame. 

Example 7.9 

Analyse the plane frame given in Figure 7.15 (a). When there is a clockwise 
rotational slip of 0.002 radians and a vertical downward displacement of 12 mm 
occuring at joint A. Take E = 200 GPa, I = 400 x lo6 m4 

Solution 

Here, E = 200 GPa = 200 x 1 o9 N/m2, 

I = 400 x 10' mm4 = 400 x lo6 x 10-l2 m4 

Let us coilsider EI in kN m2 
4 

EI = 200 x lo9 x400 x lo6 x (10-54 Nm2 

= 8 0 x  lo6 ~m~ = 8 0 x  1 0 ' k ~  m2 



Degree of freedom 

Here, the degrees of freedom are three, namely eB, 8,. and sway 6 assumed towards 
right. The sway 6 has negative sign since it causes anticlockwise fixing moments in 
columns AB arid DC. 

We have, 8, = 0.002 radian clockwise, 8, = 0: vertical settlement at B with resped 
to A = 12 mrn = 0.012 m. The settlement, 6 is positive for member BC as it causes 
clockwise fixing moments at its ends. 

Slope deflection equations 

Equilibrium conditions 

Joint B 

MBA + MBc = 0 

40, + e, + 0.008 - 0.75 6 = o 
Joint C 

Shear condition 

HA + HD = 0 (no horizontal load) 

Slope Defleclion Method 
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Structures - I 

On substitution, 50, + 1.6 0, - 3.14 6 + 0.001 = 0 

On solving above equaions (I), (11) and (111). we get 

6 = - 0.0002525 m (to left) 

0, = - 0.001573 radian (anticlockwise) 

0, = - 0.001654 radian (anticlockwise) 

Final momznts . 
Ma = EI (0, - 0.75 6 + 0.004) 

= 202.8 kN m 

Similarly, 

M, = -89.5 kN m 

MBc = 89.5 kN m Mc-B = 96 kN m 

McD=-96kNm MDc = 45.49 kN m 

Figure 7.15 (b) shows the bending moment diagram on tension side. 

SAQ 7 
Analyse the plane frame shown in Figure 7.16. Take EI as constant for all the 
members. 

Figure 7.16 figure 7.17 

SAQ 8 
Analyse th,: portal frame shown in Figure 7.17 above. There is rotational slip of 
0.002 radian clockwise nnd vertical settlement of 10 mm at joint D, 

Take E = 200 k ~ / m m *  and I = 3 x lo5 mm4 



7-10 SUMMARY Mope Deflection Methd  

Slope ckeflection equnrions 

The slope detlection equations for a inember can be expressed as 

and 

whde FM,, and FMBA are fixed end molnents due to loads. If there is no 
lateral translation, 6 = O in the above expression. 0, a~rd 0, are rotations at 
ends A and B respectively. Rotation is zero for fixed end. Moment is zero for a 
hinged or roller support. 

(a) If there are m members meeting at a joint then algebraic sum of moments 
at a joint is zero. Thus, equilibrium condition for joint i is 

(b) For any plane frame. the algebraic sum of horizontal reactions at supports 
and external horizolltal loads on columns inust be equal to zero. This is 
known as shear condilion. Shear ecluations ;Ire required to be formed, in 
addition to equilibrium equations for moments at joints, in case of plane 
frames with sway. 

The solution of equilibrium vquations will give displacenlcnts or primary 
unknowns. Final moments are Lh:n oblainetl by substituting these 
displacements into s l o p  dctlection equations. 

When the frame is symmetrical with respect Lo geometry and loading, the 
advantage of symmetry is taken by selecting half Lhe struclure for analysis 
with appropriate boundary condition. 

Causes of side sway for plane frames are as follows : 

(a) unsy&netrical loading, 

(b) geometric asymmetry of tiaine such as different end conditions, or 
different EI, or different heights of colurm~s, 

(c) horizontal loading, and 

(d) settlement of supports, and my  colnbination of these. 

7.11 KEY WORDS 

Initial Fixed End 
Moments 

Sinking o f  Support or : 
Settlement of Support 

'Side Sway 

Slope Deflection Equations : 

Equilibrium Equations :a 

Moments at the ends of restrained n~enlber due to loads or 
settlenlent ot support. 

Lateral displacement of one end of the member with 
respect to the other. This causes moments at both ends of 
a member. 

Lateral displilcement of end of the colu~nn, which induces 
molnents at both ends depending ubou boundary condition. 

Equations relating final lnonlents at end of 'member with 
initial moments due to load and displacements, i.e. 
rotations at two ends of me'nlbers and translation of the 
supports. 

Algebraic sum of monlents at a joint equals to zero should 
be satisfied which is a statical condition of equilibrium. 



Indeternunate 
Structures - I 

Shear Condition This is an additional condition to compute unknowns in 
case of sway which states that summation of horizontal 
forces, i.e. horizontal reactions at supports and lateral 
loads oil any particular column level is zero. 

7.12 ANSWERS TO SAQs 

SAQ 1 
Unknowns : 0, and 0,. 

' 90 and 20, + 70, = 0 Equations : 70, + 20 - - 
- EI 

14 4 
Msplaceinents : 0, = (clxkwise) and 0, = - - (anticlockwise) 

EI 

End moments : MA, = 7 kN m Mm=14kNm=-MB,- 

MD,=- 28 kN m Mm=34kNm=-Mm 

SAQ 2 

20 
Unknowns : 0, in both cases is - (clockwise) [it has become incidentally]. 

EI 

End moments (all hogging and in,kN m) are as given below : 

M~ M~ 
Case (a) 30 60 50 

Case (b) 42 48 66 
SAQ 3 

Unknowns 0,, 0, and 0, 
, 

Repeat the procedure similar to Example 7.6. 

30 45 0, = 0 ,0  - - and 0, = - -can be obtained - EI EI 

Incidentally, the bending moment diagram will be same as Figure 7 7 (b). 
SAQ 4 

10.303 
0, = 7 and 

End moments are shown in bending moment diagram in Figure 7.18. 

IJigurc 7.18 

SAQ 5 

30 Unknowns :BB = 8, = - - 
EI 



SAQ 6 
Here, the degrees of freedom is two, i.e. 0, and Oc hut 8, = 0,. 

The m i f i e d  half structure is shown in Figure 7.12 (b). The unknown displacements 
will be 0, and deflection at centre line. Hence, in this case there is no advantage in 
considering symmetry. So, let us analyse the whole structure and take on symmetrq 
a ~ 0 , = - 0 ~  

Fixed end moments 

FMcB = 24 kN m = - FMBc (as found in Example 7.1) 

Slope deflection equations . 

We get 

Similarly, MRc = El  0, - 24 

Equilibrium conditions 

At joint B , MBA+MBc=O 

El  0, + (El 0, - 24) = 0 

Final nzoments 
MAB=6kNm M,= 12kNm 

MBc=-12kNm M,,=12kNm 

M,=-12kNm M,,=-6kNm 

SAQ 7 
Unknowns : gB, Oc and 6 (horizontal displacements of B and 0 

Displacements : E l  0, = - 32.54 kN m2 

El  0,- = 5.092 kN m2 

El6 = - 23.35 kN m3 

whek E l  is in kN m2 and 0, & 0, are in radians. 

End moments (in kN m) (clockwise as positive) 

MAB = 0 MBA = 90 

MBc= -60 Ma = - 22.36 

MBD = - 30 MDB = 2.49 

M, = 22.36 M,,. = 18.96. 

SAQ 8 
Moments in kN m are as follows : 

MA, = - 275.091 MM = 42.652 = -MBc 

MD, = 87.28 M, = - 68.44 = - M,, 

Slope Deflection Method 


