STRUCTURAL ANALYSIS - II

SYLLABUS

UNIT-I: MOMENT DISTRIBUTION METHOD

Analysis of Single Bay Single Storey Portal Frame including side Sway. Analysis of inclined Frames. Kani's Method: Analysis of Continuous Beams including settlement of supports. Analysis of single bay single storey and single bay two Storey Frames by Kani's Method including side Sway. Shear Force Bending Moment Diagrams. Elastic curves.

UNIT-II: SLOPE DEFLECTION METHOD

Analysis of Single Bay Single Storey Portal Frames by Slope Deflection Method including side Sway – Shear Force Bending Moment Diagrams. Elastic curve. Two Hinged Arches: Introduction-Classification of Two hinged Arches-Analysis of Two Hinged Parabolic Arches due to temperature and elastic shortening of rib.

UNIT-III: APPROXIMATE METHODS OF ANALYSIS

Introduction – Analysis of multi-storey frames for lateral loads: Portal Method , Cantilever method and Factor method. Analysis of multi-storey frames for gravity (vertical) loads. Substitute Frame method Analysis of Mill bents.

UNIT-IV: MATRIX METHOD OF ANALYSIS

Introduction –Static and Kinematic Indeterminacy-Analysis of Continuous beams including settlement of supports, using Stiffness Method. Analysis of Pin –jointed determinate plane frames using Stiffness method-Analysis of Single Bay Single Storey Portal Frame including side Sway using Stiffness Method. Analysis of Continuous Beams upto three degree of indeterminacy using Flexibility Method. Shear Force Bending Moment Diagrams. Elastic curves.

UNIT-V: INFLUENCE LINES FOR INDETERMINATE BEAMS

Introduction –ILD for two span continuous beam with constant and variable moments of inertia. ILD for Propped Cantilever beams. Indeterminate Trusses: Determination of Static and Kinematic Indeterminacies - Analysis of trusses having single and two degrees of internal and external indeterminacies-Castigliano's second Theorem.

MOMENT DISTRIBUTION METHOD MDM - Analysis of Single Bay Single Storey Portal Frames including side Sway. Analysis of inclined frames. MDM - The method was first introduced by Brog. Hardy Cross in 1920 The method could be used for the analysis of all types of statically indeterminate beams or ngid frames. Stillness: It is denoted by K. The moment k is also known as absolute stillness or simply stillness. The stillness of a member is a moment sequired to slotate the end under consideration through unit angle. It is the amount of force equired to produce unit deflation or desplacement is called Preposition - 1: The moment is required to extede the near and of a prismatic beam theough a unit angle, without translation, The fax and being freely supported is a pleas and $k = \left(\frac{3 \in \mathfrak{T}}{l}\right) \xrightarrow{3} \left(\frac{3}{4}\right) \xrightarrow{1}_{k=3} \left(\frac{1}{2}\right)$ Perposition - 2 " The moment k' required to adade the near end of a primatic beam theough unit angle, without translation, the fay end is fixed : K = 4EI = I meas end at end Reposition - 3: A moment which i notates the near end of beam neilhout teanslation, the facend being fixed, induces at the face end a morner of one half its magnitude & in the same direction. M, = 36,210= 100 July $M_2 = \frac{4229}{12}0 = k_20$

$$M_3 = 3 \frac{\epsilon_3 s_1}{l_2} 0 = k_3 0$$

$$M = M_1 + M_2 + M_3 + M_4 = 9$$

$$M_1: M_2: M_3: M_4: k_1: k_2: k_3: k_4 = 9$$

$$M_1: M_2: M_3: M_4: k_1: k_2: k_3: k_4 = 9$$

$$M_1 = \frac{k_1}{k_1 + k_2 + k_3 + k_4} \cdot M = \frac{k_1}{\Sigma K} M$$

$$M_2 = \frac{k_2}{k_1 + k_2 + k_3 + k_4} \cdot M = \frac{k_2}{\Sigma k} \cdot M$$

$$M_3 = \frac{k_3}{\Sigma k} \cdot M$$

Paeposition - 4 : A moment which tends to votate a joint wilhout translation, will be divided amongst the connecting members of the joint in proportion to their "stillness".

The quartities $\frac{k_1}{\Sigma k}$, $\frac{k_2}{\Sigma k}$, $\frac{k_3}{\Sigma k}$, $\frac{k_4}{\Sigma k}$ are called distribution Jadons. The moments u_1, u_2, u_3, u_4 are called as distribution moments.

Fixed Grid Morrisoft 8
MFAB =
$$-\frac{Wab^2}{L^2}$$
 $\frac{a+b}{b+c}$ $M = \frac{Sinking}{L^2}$ of Supports 8
MFAB = $\frac{Wa^2b}{L^2}$ $\frac{a+b}{b+c}$ $M = \frac{6653}{L^2}$ $M = \frac{6653}{L^2}$
MFBA = $\frac{Wa^2b}{L^2}$ $\frac{a+b}{b+c}$ $M = \frac{3638}{L^2}$ $M = \frac{2634}{L^2}$
MFBA = $\frac{WL}{8}$ $M = \frac{3638}{L^2}$ $M = \frac{3638}{L^2}$ $M = \frac{2634}{L^2}$
MFBA = $\frac{WL}{8}$ $M = \frac{1}{2}$ $M = \frac{3638}{L^2}$ $M = \frac{2634}{L^2}$
MFBA = $\frac{WL}{8}$ $M = \frac{1}{2}$ $M = \frac{3638}{L^2}$ $M = \frac{2634}{L^2}$
MFBA = $\frac{WL}{8}$ $M = \frac{1}{2}$ $M = \frac{3638}{L^2}$ $M = \frac{2634}{L^2}$ $M = \frac{2634}{L^2}$
MFBA = $\frac{WL}{12}$ $M = \frac{1}{2}$ $M = \frac{1}{20}$ $M = \frac{1}{12}$ $M = \frac{1}{12}$

Portal frames with sideway?

Sway one of the degrees of freedom. In portal frames, the arnound of eawy or joint movement is not known & the analysis is done by assuming some arbitary fined moments.

These around fined moments due to side sway are then distributed & the reactions are found.

The algebraic sum of the horizontal reactions due to the assumed sway moments must be equal to the sawy force.

Counces of Side sway o

1) Eccentric or unsymmetrical loading on the portal frame.

2) Unsymmetoical out-line of pardal frame.

3) Different end conditions of the columns of the partal frame. 4) Non-uniform section of the members of the frame

5). Honrondal loading on the columns of the frame.

6) settlement of the supports of the frame

a) Kombination of all above.

Melhod of Analysis :

Analysis of the founds with side sway is done dig following Step 82-a) Hold the joints against side sway by applying a force 'p'. calculate the fixed end moments due to external loads & distribute the moments.

b) Calculate the horizontal & vertical reactions. The algebraic sum of the two horizontal reactions at the column bases with give the value of the restraining or holding force p. The sway force I will be in the opposite direction & of the magnitude of p. step-2: a) Remove the holding force P & pernit the joints to sway. This will cause a set of lived end moments. To start with, ausume suitable sway moments at the four joint. AB, c & D of the frame, in proportion.

b) calculate the horizontal & vectical reactions due to the automation is way moments. The algebraic sum of the horizontal reactions of two column bases must be equal to the sway force S. It not; reduced the sway moments assumed proportionately. The sway moments assumed proportionately. The sway moments assumed that the algebraic sum of the horizontal reactions due to sway is equal to the sway force S.

let H, E, H2 be the honrontal reactions.

let c(H,+H2) = S

then, acutal sway moments = C × Assumed Sway moments. Thus the actual sway moments are known.

Step-3 : a) The final moments at each joint will be equal to the algebraic sum of the moments due to initial moments. (a) (as obtained in step P(a) & the moments due to actual sway (as obtained in step (2))] b) the final reactions will be equal to the algebraic sum of these found in 16) & 2(6).

Radio of Sway Moments at Column Heads: When the joints sway, a set of moments are introduced at the two column heads (and bases) of a portal frame. The radio of the sway moments at the two column heads [i.e MBA: Mco) will depend open the end conditions let us now take different end conditions to devine the standard corponentions for the radio of the sway moments. Care I: Both ends hinged:

0

0

۲

0

0

0

0

0

۲

۲

۲

۲

0

0

0

0

0

۲

0

0

0

0

0

0

0

2

Consider a parter frame with dimension. let $\rightarrow 1814 \rightarrow 1814$ a force P cause like frame to surge, so that the joint B moves to B' through a homeontal distance is is. J. Considering no charge in the length of BC that joint C will more to C' through distance d. (C) The fixed End moment due to movement or settlement of the support when beam hinged @ one end & fixed at other end is on MBA = $\frac{3 \in \Gamma, \delta}{L_{1}^{2}}$ D Dividing $O \in O$ Thy MeD = $\frac{3 \in \Gamma, \delta}{L_{2}^{2}}$

: both like colomns rotade in same direction. The moment Man & Map with be either positive or negative. for fig @ the moments one five size they rotate, clack ruite direction.

Care-Ji: Both ends fined & movement BB'=cc'=d Fixed al ends A & B.

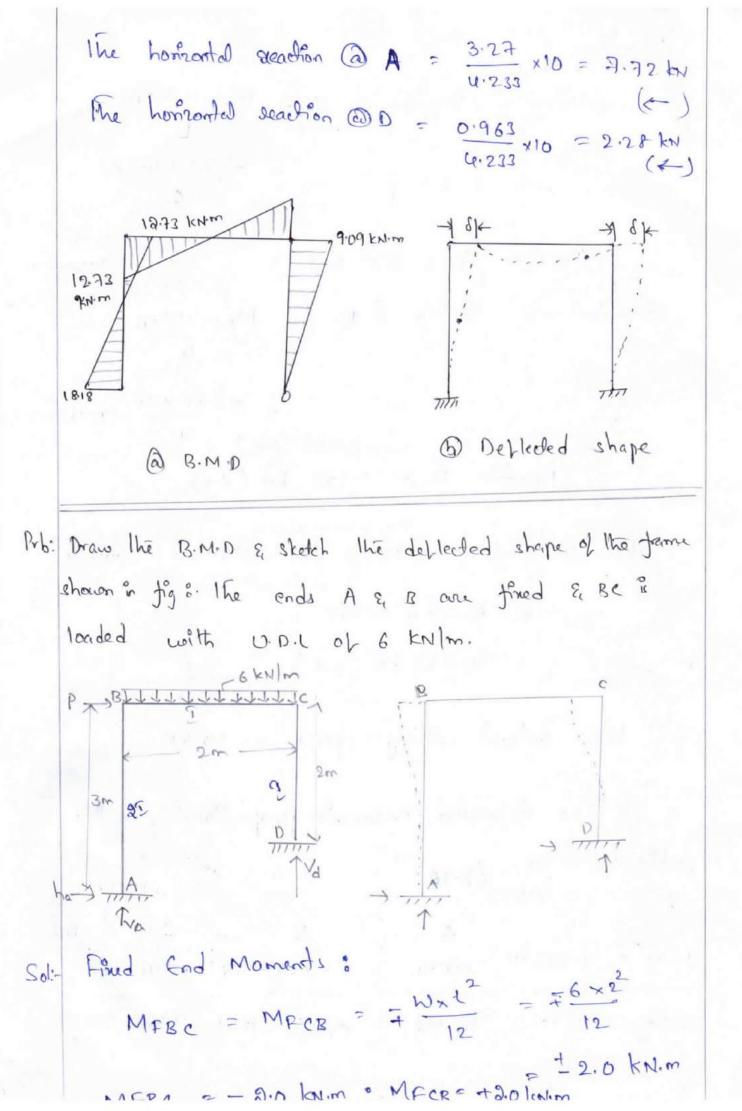
 $M_{BA} = M_{AR} = \frac{6 \epsilon \Omega_1 \delta}{L_1^2}$ $M_{CD} = M_{DC} = \frac{6 \epsilon \Omega_2 \delta}{L_2^2}$ \vdots $\frac{M_{BA}}{M_{CD}} = \frac{\Omega_1 / L_1^2}{\Omega_2 / L_2^2}$

cloclewise rotation, the eway moments will be Fre. anticlockwise ", the " " " + re.

(aue.
$$\underline{E}^{\mu}$$
 - One end fixed and other end hinged s
 $Bb' = cc' = d$
 $Men = Mag = \frac{6 + 2 \cdot d}{L_{1}^{2}} = 0$
 $Mco = \frac{3 + 2 \cdot d}{L_{1}^{2}} = 0$
 $Mco = \frac{3 + 2 \cdot d}{L_{1}^{2}} = 0$
 $Mco = \frac{3 + 2 \cdot d}{L_{1}^{2}} = 2 \cdot \frac{d}{L_{1}} \cdot \frac{d}{2} \cdot \frac{d$

the member meeting at a joint one of some moterial & are fined at the day end, the shipponers of each member is $\frac{1}{2}$. The member meeting at a joint are freely supported at the other end, the shippers is $\frac{3}{2}$. Problem :

1. Analyse the portal frames shown below. The end A is find and D is hinged. The joints BE C are nigid. Draw the Bimp & sketch the deflected shape of the frame.


to side		at the joint, there moments. Therefore means will be in	re due	um EI consti	ant.
Joint	Member		Sum EK	D.F (Ky	
	BA	Th = Thy		0.5	
В	BC	$T_{1} = T_{4}$	25	0.5	
	CB	9/2 = 9/4		0.57	-

Side Sway is The side Sway will be clockwise in direction ; at the columns AB & CD. Thus -ve moment will be induced at A, B & C. [One end fixed & other hinged] $\therefore \frac{MBA}{MeD} = \frac{2e \cdot f|L^{\frac{1}{2}}}{\frac{F}{2}/L_2^2} = \frac{2F}{\frac{F}{2}} = \frac{2}{2}$

	MBA = N					
let a	Bune	abitaly mor	near)s :			
	Mco	2 - 5 kN·m				
MAR	= MBr	h = -10 kN·m	n			
A		3	С		D	
	0.5	0.5	0.57	0.43	0	F. G.M
-10.0	-10.0	5>		-50	0-	Bal
-	+5	+5	+ 2.86	+2.14		but
+ 2.50	7 1	+1:43	+2.50	-		C. 0
_	-0.725	-0.715	-1.425	-1.07	-	Bal
-0.357	_ .	-0·712	-0.357	-	-	(- 0
-	0.38	0.356	0.2.03	0.161	~	Bal
0.178	-	0.1017	0.17.8		_	60
-	-0.050	-0.050	- 0.1014		-	Ba
-0.025	-	-0.0507	-0.025	-	- 0:034	(.0
-	0.025	0.025	0.0142	0.0107	-	Ba
-0:0125	-0-	9.				
- 7.70 KN.m	- 5.384	5.384	3.945	-3.847	0	FM
				1.1.1.1		

Final Moments: MAB = -7.70 knim MBA = -5.384 kNim MBC = 5.384 KN.m = 3.845 kN.m MCB -3.847 KN.m MCD

Honzontal Reaction at A = MAB + MBA ... = - (70 + 5.38) -811+EALY_ Reaction : A = 3.27 kN (+) = +13.08 = 3.27 .4 = 3.27 kN (+) = -3.27(+) kN(+) Homeontal Reaction of D = MOC+MCD = - B. 81 + 0) == 0.963 =0.962 (+) Reaction D = 0.963 KN (+) ... The sway force caused the assumed moments = 3.27 + 0.963 = 4.232 KN (->) " The actual Sway force = 10 kN . The increased moments proportionally in the Jo sitore 10 = (2.36) C R D A 3 way = 4.283 KN -5.38.+538 +3.86 3.84 -7.70 Sway = 10 kN 18.172 -12.69 19.69 9.062 -9.062 0

Distribution Factors : **b**)

0

0

0

0

0

0

0

•

0

•

•

0

0

0

.......

0

0

0

0

0

•

•

0

0

0

0)

Relative (K) Joint Member Sum (Mex) DiF (K) Stillness BA 31-21 0.57 B u1+31 71 5-2-BC 0.43 TB C-J-0.50 Sh = 2/2 3I = I C CD 0.50

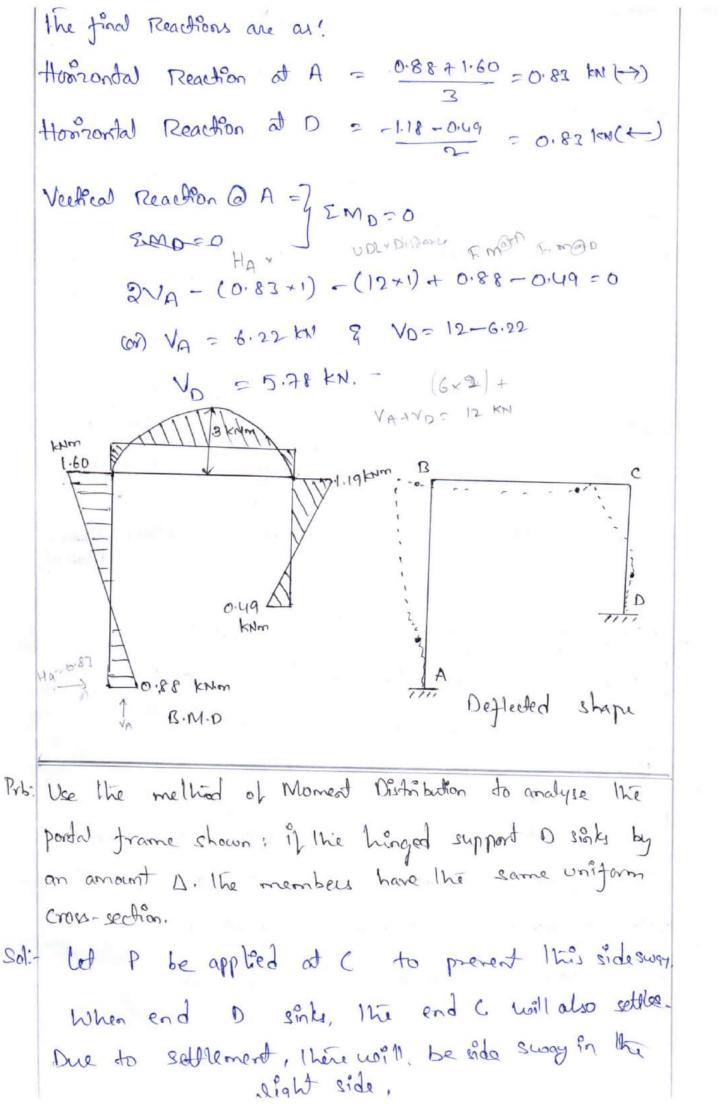
Moment Distribution Mable :

A		3	0		D	
0	0.57	0.43	0.5	0.5)		BEM
-	+ 1.1U	-2.0	+2.0	0-1.0	0	F.C.M Bal
057	<, ⁻	-0.50	+0.43	-	-0.50	C 0
	+0.29	+0.21	- 0.21	0.22	_	Bal
+0.15	-	~ 0-11	+0.10	-	- 0.11	Cr 0
-	+0.06	+0.05	-0.05	-0.05		
40.03		-0.03	+0.03	-	-0.03	Bal
+0.01	€ +0.02	+0.01	-0.02	-0.01	-) -	C.0 B& C.0
+0.76	+ 1,51	-1.51	+ 1.28	-1.28	-0.64	Final
d) Red	fions	0	2		= MAB+ M	BA

Honizontal Reaction @A = ha = 0.76+1.51

ha = 2.27/3 = 0.76 KN (->) E horizontal leadion (), $h_1 = -(1.28+0.64) = 1.92$ 5-0.96 hy = 0.96 KN (+) The horizontal force P = 0.96-0.76 = 0.20 lar (-)P= 0.20 KN (-)) The side Sway value of P The value of P preventing side sway = 0.20 kN-> Side Sway: Now let a side Sway 3:0:20KN K be applied at c. ... The colonous AB & DC notates in anticlockwoise direction & thus clockwoise moments veill be induced at colorno heads $\frac{MBA}{McD} = \frac{I_1 | L_1^2}{I_2 / L_2^2} = \frac{22/9}{I_1 + \frac{3}{9}} = \frac{8}{9}$ let the arbitary moments be: MBA = MAB = + 8 lenter Mco = Moc = +9 kilon Readions ? Honzatal Readion at A = 6.26 + 4.53 = 3.60 KNG)] Honzondal Reaction of D = 35,15+7.08 = 6,12 KM(-)

/ 1	1	3		1	D	
	0.57	0.43	0.5	0.5	×	
+8.0	+8.0		-	+9.0	+9.0	FEM
-	-4.57	-3.03	-4.50	-4.50	~	Bal
2.29	-	-2.25	-1.72	-	- 2.25	CO
-	+ 1.29	+0.96	+0.86	+0 86	-	Bal
+ 0.64	-	+0'43	+0.48	-	+0.43	CO
r	-0.25	-0.18	-0.24	-0.24		13a)
-0.13	-	-0.12	-0.09	-	- 0.12	60
-	+0.07	+0.05	+ 0.05	+0.04	-	Bal
-D.0 U	-	+0.02	+0.02	-	+002	NGO
-	-0.01	-0.01	-0.02	-0.01	-	Bal
+ 6.26	44.53	-4.63	-5.15	+515	4708	Final Moments
	1				1	
1he	sway f	orce whi 3.6+	6.12 = "	the assu 7.7K («	(-)	rents
1he	sway f	orce whi 3.6+	ch induce	the assu 7.7K («	(-)	rents
The che c	sway f = corrected	3.6+ Seway	ch induce $6.12 = 0$	the assu 7.7K («	(-) (-)	Lerits D + 7.08
The	sway f = corrected A +6:26	3.6+ Savay +4.5	ch indue 6.12 = " morried B	1 the arou 7.7k (: Table c	(-) (-) (-) (-)	D


+1.60 -1.60

+1.18 -1.18

+0.76 F.5.M on-sway 4. Final Moment + 0.88

•

-0.49

The settle ment of end C
Will induce moment in BC
in anticlockuloise direction.
MFBC = MPCB =
$$-\frac{6}{(2)}$$
 to L
 $= -6 C (3ay)$
 $C = \frac{65A}{(2)}$
 $C = \frac{6}{(2)}$
 $C = \frac{6}{(2)}$
 $C = \frac{6}{(2)}$
 $C = \frac{1}{(2)}$
 $C = \frac{1}{(2)}$

	0.4	0.6	0.73	0.27		
~	- 1	6.0 C	-6.DC	-	-	FEM
	+2.U C -	+3.6 C	+ U.36 C +	-164c	-	Bal
-1.2 C	-	+2.180	+1.8 c	-		C.0
-	-0.87 C	-1.31 C	-1.310 -	0.444	_	Bel
- Duuc	-	- 0.66 C	+0.66c	-	-	C.0
-	+0.26 C	+0.00 C	+0.48C		-	Bal
+0-130		+0.24 0	+0.200	-	-	C.0
-	-0.10C	- 0.14 C	-D.ILC	-0.06 C	-	Bal
·0.020		-0.070	-0.07C	-	*	C.0
-	+0.030	+0.04 C	+0.050	+0.02C	-	Bal
+ 0.02 C	-	+0.03 C	+0.020	-	-	C.0
-0.010 +	-0.01 C	-0.02 C	-0.010	-0.01 C	-	82.00
	of corre			+ 1.28C	0	-
	a) Cerry	eding mon 3		+ 1.28C	0 D	-
e) Distribution	e) Com E D.y	eding mon 3 0.6		1		-
e) Distribution	a) Cerry	ecting mon 3 0.6	neats: C 0.73	0.29- -2.25		Fem
e) Distribution	e) Com E D.y	eding mon 3 0.6	neats:	0.29 -2.25		
2) Distribution A -8.0	a) Curry D.y - 8.0	ecting mon 3 0.6	neats: C 0.73	0.29 -2.25 +0.61		Fem
2) Distribution A -8.0	a) Curry D.y - 8.0 +3.20	ecting mon 3 0.6 - 44.80	neats : C 0.73 - +1.64 +2.40	0.29 -2.25 +0.61		Fem Bal
e) Distribution A -8.0 - +1.60	e) Curry 0.4 - 8.0 +3.20	eching mon 3 0.6 +U.80 -+0.52	neats : C 0.73 - +1.64 +2.40	0.29 -2.25 +0.61 -0.65		FEM TBal C.O
e) Distribution A -8.0 - +1.60	e) Curry D:4 - 8:0 +3:20 - - 0:33	eding mon 3 0.6 - +U.80 +0.82 -0.49	nearts : 0:73 - +1:64 +2:40 -1:75 -0.21	0.29 -2.25 +0.61 -0.65		Fem Bal C.O Bal
2) Distribution A -8.0 - +1.60 - - 0.16	e) Curry D.Y - 8:0 +3.20 - - 0.33	eding mon 3 0.6 - - 44.80 +0.52 -0.49 -0.87 +0.52	nearts : C 0.73 - + 1.64 + 2.4 C -1.75 -0.21 +0.17	0.29 -2.25 +0.61 	D 1 - 1	Fem TBal C·O Bal C·O Bal
2) Distribution A -8.0 - +1.60 - - 0.16	e) Curry D.Y - 8:0 +3.20 - - 0.33	eding mon 3 0.6 - +U.80 +0.82 -0.49 -0.87 +0.52 +0.09	nearts : 0.73 -1.64 +2.40 -1.75 -0.21 +0.21 +0.20	0.29 -2.25 +0.61 	D 1 - 1	Fem 13al C·0 Bal C·0 Bal C·0
2) Distribution A -8.0 - +1.60 - - 0.16 - +0.18 -	e) Curry 0.4 - 8.0 +3.20 - -0.33 - +0.35 - -0.04	$ \frac{1}{2} \frac$	nearts : 0:73 - +1:64 +2:40 -1:75 -0:20 +0:17 +0.20 -0:19	0.29 -2.25 +0.61 - -0.67 - +0.07 - - -0.07		Fem TBal C·O Bal C·O Bal C·O Bal
a) $D_{13}^{0} + D_{13}^{0} + D_{13}^{0} + D_{13}^{0} + D_{14}^{0} + $	e) Curry 0.4 - 8.0 +3.20 - -0.33 - -0.35 - -0.04	$ \begin{array}{c} edim{0}{3} mon \\ 2 \\ 0.6 \\ \\ -4u.80 \\ +0.82 \\ -0.49 \\ -0.87 \\ +0.52 \\ +0.52 \\ +0.52 \\ -0.05 \\ -0.05 \\ -0.05 \\ -0.09 \\ $	nearts :	$ \begin{array}{c} 0.29 \\ -2.25 \\ +0.61 \\$	D 1 - 1	Fem 13al C·0 Bal C·0 Bal C·0 Bal C·0 Bal C·0
- 0.16 	e) Curry 0.4 - 8.0 +3.20 - -0.33 - +0.35 - -0.04	$ \frac{1}{2} \frac$	nearts :	0.29 -2.25 +0.61 - -0.67 - +0.07 - - -0.07		Fem TBal C·O Bal C·O Bal C·O Bal

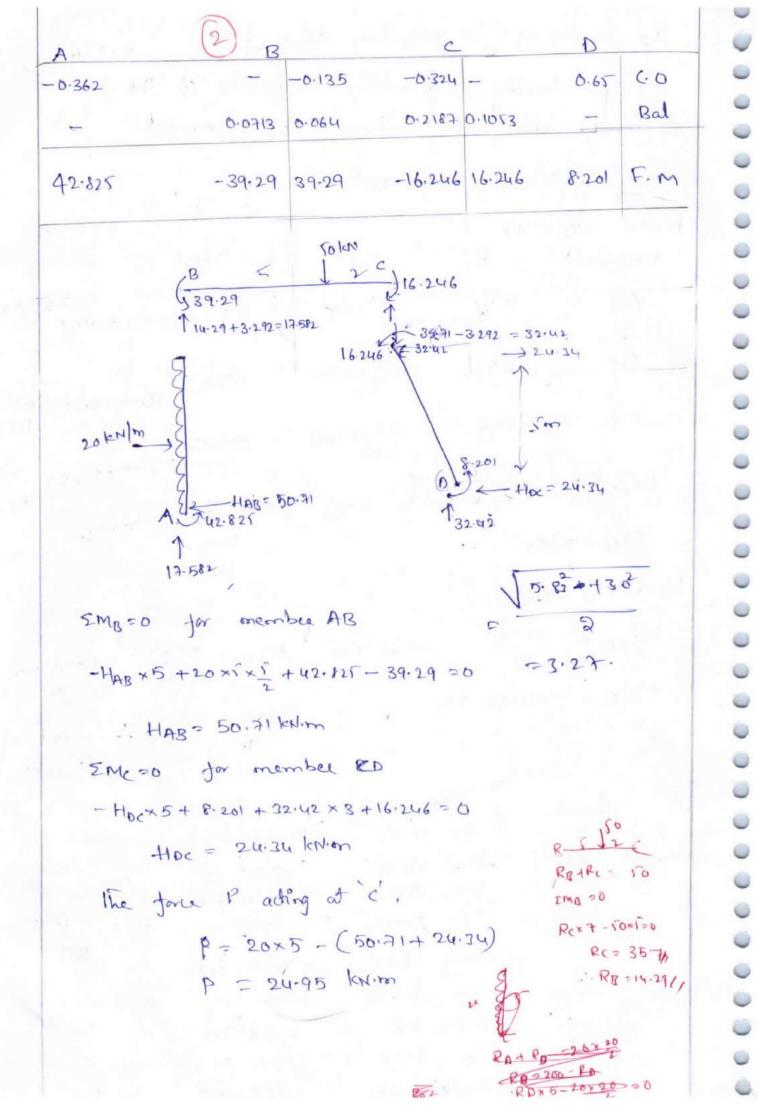
d) Side Sway &	
Apply a force S = 2.353 ERD at B in opposite direction	
to that of P. Side sway will produce induce anticlockwise	
moment AIB & C,	
$\frac{M_{BA} \text{ or } M_{AB}}{M_{CD}} = \frac{2 \Omega_1 / L_1^2}{\Omega_2 / L_2^2} = \frac{8/9}{1/4} = \frac{32}{9}$	
· aubidany morents assumed are ?	
MBA = MAy = - 80 KNIM	
$M_{CD} = -2.25$ knlvon	
P) The horizontal reaction (a) $A = -(6.38 + 4.78) = \frac{7.44}{1.5L} = \frac{7.44}{L}$ (c)	
The horizontal reaction @ D = 2.28	
1 + 114 = 8.58	
But the actual subay force is 2.352 EID	
V in se corrected according a 111	
A start in the start in the start is the start in the start is the sta	
B C 1.Suxy= 1 - 6.38 - 4.78 + 4.28 - 2.28	
$a - 3 - 3 - 3 - \frac{1}{2} $	
Non 3. Sway roment + $\frac{0.85EID}{l^2}$ + $\frac{1.31EID}{l}$ - $\frac{1.31EID}{l^2}$ - $\frac{1.28EID}{l^2}$ + $\frac{1.28EID}{l^2}$	
4. Final - 0.9EID + D.4EID _ 0.4EID _ 0.65EID 0.65EID	
4. Final $-\frac{0.4EID}{l^2} + \frac{0.4EID}{l^2} - \frac{0.4EID}{l^2} - \frac{0.65EID}{l^2} = \frac{0.65EID}{l^2}$	
U. monuent $\frac{-0.4EID}{l^2} + \frac{0.4EID}{l^2} - \frac{0.4EID}{l^2} - \frac{0.65EID}{l^2} = \frac{0.65EID}{l^2}$	
$\frac{1}{1000000} \frac{12}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12}$	

0.9 R. £

74

Ì.

Portal frame with inclined leg: Rts: Inclined members are used, though less frequently, in pitched 2001s, in high trestles, & in Joamed girdees for bridges. -) Mostly inclined members are used in buildings for elegance in appearance. -) Rigid jointed structures involving inclined members in their construction are of two types: -) First one is the single or sould bay sigid portal frame. There types are used for construction of factories E it not only prevents a clean & elegant appreasance of but also provides unsesticided internal space by bracing member. The second type is the open - joanne cartilerer or girdy. This is used as trestles in vertical orientation or as a bridge in homental position. I In these types of application; the inclined member also help to servist lateral forces better in open frame. -> In such copplication, the inclined member is both Junction -n al & pleasing


Prob: Find the end moments in the members of the best us shown below: 1 -> B 51 C 5m - of 12 20 points 5m Sol: The length of the member $CD = \sqrt{5^2 + 2^2} = 5.83m$. The loading & geomethical configuration of the parme is unsymmetrical, it undergoes sway moment. Moment Distribution under vertical loadings: Relative stiffnes: Member $k = \Sigma k = D.F(k/sk)$

= 0.528 - FBA 4341 0.8 2 /0.8 I + 0.7 14 T AB 41 =0.82 53/1 BC 51 = 0.749 0.74,9/0.7142+0.3631=0.675 29/L CD DFCB 21 =03431 D.FAB=0, DFBA=0.528, D.FBC=0.472, DFCB=0.675 DECO DFeD = 0.325

Fined - End Moments :

 $MFBA = \frac{20 \times 5^{2}}{12} = 41.67 \text{ kNm} \qquad MFBC = \frac{50 \times 5 \times 2^{2}}{7^{2}} = 20.41 \text{ kmm}$ $MFAB = -41.67 \text{ kNm} \qquad MFCB = -\frac{50 \times 1^{2} \times 2}{7^{2}} = -51.02 \text{ kmm}$

A	A	B		(D	
0	0	0.528	0.472	0.675	0.325	0	D.F
apple of	+41+67	-41-67	20:42	-51.02	1 march 1	0	FEM
	5.615	-	17.22	34.44 5.015		- 	Bal C.D
e)	-	-9.09	-8.13			8.29	Bal
	-4.545	1. 5	-1.693	-4.065	-	-0.815	0.2
	-	0.894	0.8	2.744	1-321	-	Bal
	0.447	a D	1.372	8.4	6	0-661	CO
	1	-0.724	-0.648	-0.27	-0.13	-	Ral

Moment	P	3	C		D	
0	0.528	0.472	0.675	0-325	O.	D.F
96	96	-73.47	-73.47	41.17	41.12	FEN
-	-11-90	-10.63	21.80	10.50	-	Bal
-5.95	-	10.9	- 5.315	-	5.25	0.0
-	-5.755	-5.145	3.588	1.727	-	Bal
- 2.878	-	1-794	-2-573	-	0.864	0.0
-	-0.947	-0.847	1.737	0.826	-	Bal
-0·4735	-	0.8685	-0 4225	-	0.418	C. 0
-	-0.459	-041	0.286	0.138		Bal
867	76.94	-76.99	-54:37	54.37	47.702	CO F.N
GESA L2 MFAB MFBA	2 96	er A = 100 ur)A ; = z kN·m	$\frac{6100x4}{5^2} = 0$	*100 96 ETA	2 96 kN.	LEI
GESA L2 MEAB MEBA MECD	Ausurne = <u>6</u> <u>E</u> <u>1</u> = <u>9</u> 6 = <u>6</u>	$e_{I} \Delta = 100$ $u_{I} \Delta_{I} =$ $k_{N} m$ $e(2T) \Delta_{I} =$ $5.8 3^{2} contractions (1)$		*100 96 ETA	2 96 kN.	LEI
GESA L2 MEAB MEBA MECO MECO	Ausurne = <u>6</u> <u>E</u> <u>1</u> = <u>9</u> <u>6</u> = <u>6</u>	$e_{3} \Delta = 100$ $u_{3})\Delta_{1} =$ $k_{N} \cdot m$ $e(23)\Delta_{1} =$ $5.8 \cdot 32^{2}$ (a) $b_{1}^{2} + k_{N} \cdot m$	$\frac{6160x4}{5^2} = 0$	0.96 ETA	2 96 kn. 2 46 kn.	3- KN
GESA L2 MEAB MEBA MECO MECO	Assume $= \frac{6FL}{1}$ $= \frac{96}{-2}$ $= 4$ $= MFCB = 2$	$e_{3} \Delta = 100$ $u_{1} \Delta_{1} =$ $k_{N} \cdot m$ $e(23) \Delta_{1} =$ $f(23) \Delta_$	$\frac{6 160x4}{5^2} = 0$ $\frac{12e7}{5\cdot812}$	- 96 ETA	2 96 kn. 2 96 kn. 2 (52) 2 72 2	3 KN
GESA L2 MEAB MEBA MECD MEDC MEBC	Assume $= \frac{6 fl}{l}$ $= \frac{96}{2}$ $= \frac{6}{2}$ $= \frac{6}{2}$	$e_{3} \Delta = 100$ $u_{1})\Delta_{1} =$ $k_{N} \cdot m$ $e(23)\Delta_{1} =$ $f(23)\Delta_{1} =$ $f(23)\Delta_{2} =$	$\frac{6160x4}{5^2} = 0$	- 96 ETA - × (5/5.) 66	2 96 kn. 2 96 kn. 3 Url 18) 1 (59) 7 2 3	2 KN

ħ

0

D

D

D

D

0

0

0

0

0

0

•

•

0

•

•

•

•

•

•

•

•

.....

•

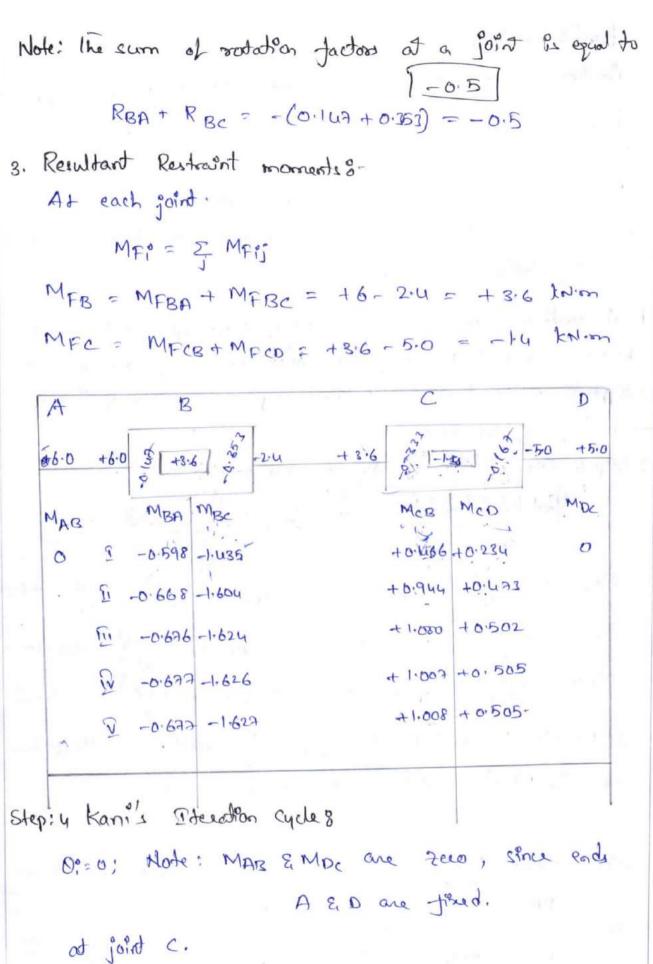
$$EM_B = 0$$
 $-H_{AR} \times 5 + 86.7 + 76.94 = 0$
 $\therefore H_{AR} = 32.73 \text{ kN}$
 $EM_C = 0$ $-H_{0C} \times 5 + 47.702 + 54.37 + 18.76 \times 3 = 0$
 $\therefore H_{0C} = 3167 \text{ kN}$
 $\therefore H_{0C} = 3167 \text{ kN}$
 $\therefore H_{0C} = 3167 \text{ kN}$
 $\therefore H_{0C} = 32.73 + 31.67$
 $= 64.4 \text{ kN}.$

. The correction factor $k = \frac{24.95}{64.4} = 0.387$.

The End moments :

and the second s	and the second se					
Member	AB	BA	BC	CB	0	DC
Final moments under needfeal loads	42.825	- 39:29	39.29	-16.246	16.246	8-26)
kx find moment sway moment	under 33.55	29.78	-29-39	- 21-04	2104	18.46
final End moments KNim	96.38	-9.51	9.5	-39.29	37.29	26.66

 $S_{1} = \frac{\delta}{\delta_{1}}$ $S_{1} = \frac{\delta}{\delta_{2}}$ $S_{2} = \frac{\delta}{\delta_{1}}$ $S_{1} = \frac{\delta}{\delta_{2}}$ $S_{2} = \frac{\delta}{\delta_{1}}$ $S_{2} = \frac{\delta}{\delta_{2}}$ $S_{3} = \frac{\delta}{\delta_{2}}$ $S_{4} = \frac{\delta}{\delta_{1}}$ $S_{5} = \frac{\delta}{\delta_{2}}$ $S_{6} = \frac{\delta}{\delta_{1}}$ $S_{1} = \frac{\delta}{\delta_{2}}$ $S_{2} = \frac{\delta}{\delta_{1}}$ $S_{2} = \frac{\delta}{\delta_{2}}$ $S_{3} = \frac{\delta}{\delta_{3}}$ $S_{4} = \frac{\delta}{\delta_{3}}$ $S_{5} = \frac{\delta}{\delta_{3}}$

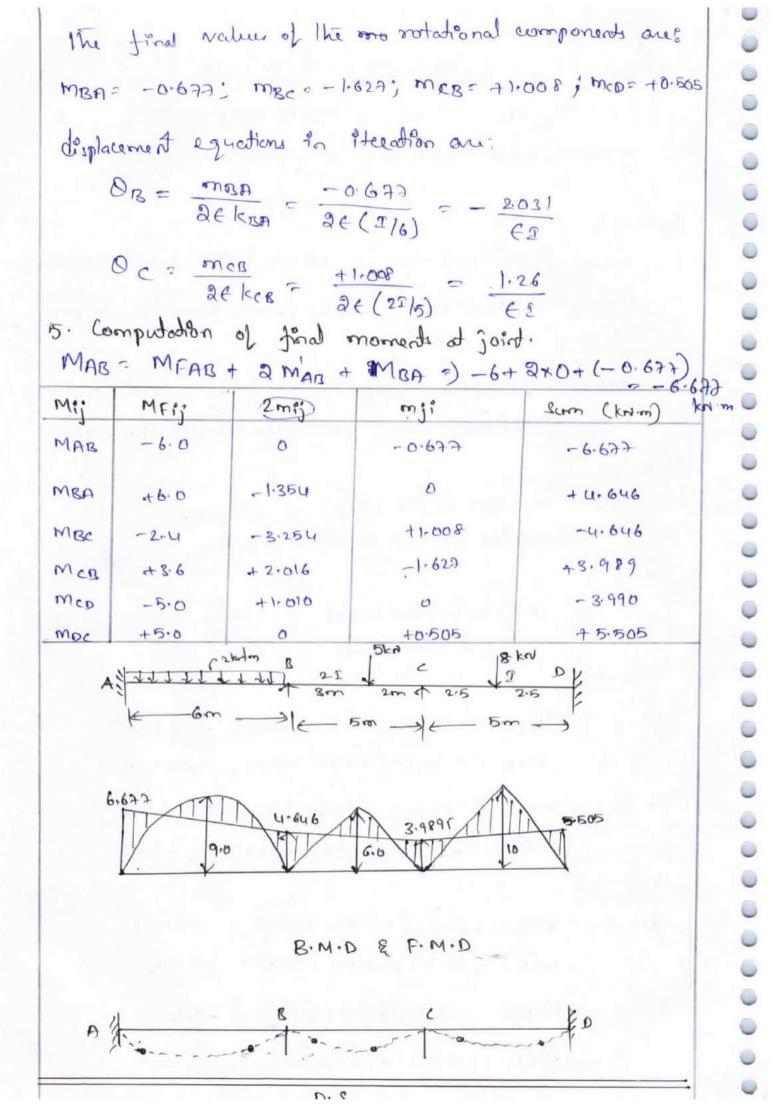

Kani's Melhod:

Analysis of continuous bearns including settlement of supports. Kani's melhad is given by Dr. Garper Kani(1947). It is similar to moment distribution melhod. The main difference b/w kanis melhod & MDM is that tani's melhod iterates the member end moments themselves rather than iterating their increments.

Pb: A continuous beam ABCD constitute of three spans, 2 is loaded as below. End A & D are fixed. ABCD constitute of B.M. at the supports, using kerni's method. Also, plot the B.M.D & the defiled ed shape of the beam.

Sol: Step-1. computation of fixed and moments A Judit did did to a step of the computation of the step of the step of the computation of the step of the s

Joind	Member	Reladive Stillness	Sum	D.F	RIF = R= -0.5xD.F
B	BA	816	172	5/17	-0.147
_	BC	29/5	30	12/17	- 0.353
	CB	25/5		2/2	-0.333
C	(co	£15	81/5	1/3	-0.167


 $\frac{cyde-1}{MBC} = 0$ MBC = 0 MBC = 0 MEC = Rcg (MFC) = -0.333 (-1.4) = +0.466 MCD = Rcg (MFC) = -0.167 (-1.4) = +0.234

(a) joint 8.

$$M_{B,c} = R_{B,c} (M_{FB} + M_{CB}) = -0.353 (+3.6+0.464)$$

 $= -1.035$
 $M_{B,R} = R_{B,R} (M_{FB} + M_{C,R}) = -0.0353 (+3.6+0.464)$
 $= -0.0598$.
 $Cyde-2.5$
 $m_{CQ} = R_{CQ} (M_{FC} + m_{B,c}) = -0.323 (-1.4 - 1.425) = +0.4031$
 $m_{CD} = R_{CD} (M_{FC} + m_{B,c}) = -0.163 (-1.4 - 1.425) = +0.4031$
(b) joint 8
 $m_{B,R} = R_{B,c} (M_{FG} + m_{C,q}) = -0.163 (+3.6+0.944) = -0.6682$
 $Cyde-3;$
 $m_{CB} = -0.323 (-1.4 - 1.604) = +1.050$
 $m_{S,R} = R_{CR} (M_{FG} + m_{Cq}) = -0.143 (+3.6+0.944) = -0.6682$
 $Cyde-3;$
 $m_{C,R} = -0.353 (+3.6 + 1.000) = -1.624$
 $m_{B,R} = -0.143 (-1.4 + 1.604) = +0.502$
(c) joint 8
 $m_{B,R} = -0.143 (+3.6 + 1.000) = -1.624$
 $m_{B,R} = -0.143 (+3.6 + 1.000) = -0.636$
 $Cyde-4 = 3$
(c) $M_{C,R} = -0.253 (+3.6 + 1.003) = -0.636$
 $Cyde-4 = 3$
(c) $M_{C,R} = -0.253 (+3.6 + 1.003) = -1.626$
 $m_{B,R} = -0.143 (+3.6 + 1.003) = -0.632$
(c) $M_{C,R} = -0.253 (+3.6 + 1.003) = -1.626$
 $m_{C,R} = -0.253 (+3.6 + 1.003) = -1.626$
 $m_{B,R} = -0.143 (+3.6 + 1.003) = -0.632$
(c) $M_{C,R} = -0.253 (+3.6 + 1.003) = -1.626$
 $m_{B,R} = -0.143 (+3.6 + 1.003) = -1.623$
(c) $M_{C,R} = -0.253 (+3.6 + 1.003) = -1.623$
 $M_{C,R} = -0.143 (+3.6 + 1.003) = -1.623$
 $M_{C,R} = -0.143 (+3.6 + 1.003) = -1.623$
 $M_{C,R} = -0.143 (+3.6 + 1.003) = -1.623$

•

......

Analysin of single storey & single bay two storey Frames by leave " Method Including Side Sway. Pro: Analyse the Portal frame shown below by kan's Method. Draw the B.M.D & sketch the deflected shape of the frame. Take EI constant for all the members. Sol: The frame unsymmetrical. Care-1 Step-1: Fixed End moments. 10m 22 A $M_{FBC} = -\frac{20 \times 5(15)^2}{90^2} = -56.25$ D MFCB = + $\frac{20 \times 15 \times 5^{2}}{20^{4}}$ = 18.25 = 18.75 kn/m Step - 2: Rotation Factors: $k_{ij}^{a} = \frac{\Omega_{ij}}{L_{ij}^{a}} \quad \mathcal{E} \quad R_{ij}^{a} = -0.5 \frac{k_{ij}}{\Sigma k_{ij}^{a}}$ KBA = AI $kBc = \frac{6R}{20} = \frac{3T}{10} = kcB$ Kep = I $R_{BA} = -0.5 \frac{2!10}{\frac{2!}{10} + \frac{3!}{10}} = -0.5 \times \frac{2!}{5} = -0.2$ $R_{BC} = -0.5 \frac{31/10}{\frac{21}{10} + \frac{31}{10}} = -0.5 \times \frac{3}{5} = 0.3$ $R_{CB} = -0.5 \frac{81/10}{10} = -0.5 \times \frac{3}{4} = -0.345$ 31 + 710 $RcD = -0.5 \frac{2/10}{\frac{32}{10} + \frac{9}{10}} = -0.5 \times \frac{1}{4} = -0.125$

0

0

0

0

0

0

0

0

0

۲

0

۲

0

0

0

0

0

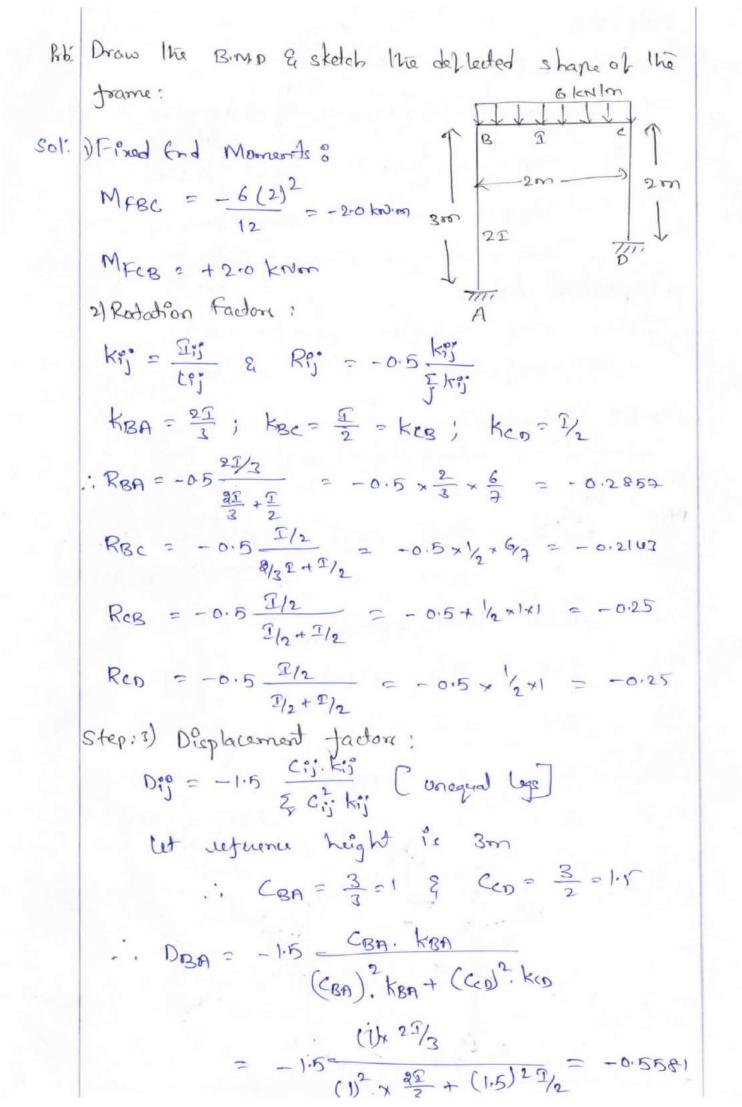
Step: 3 : Duplacement factors:

$$D_{13}^{*} = -1.5 \frac{k_{13}}{2k_{13}} =$$

 $D_{BA} = -1.5 \frac{k_{BA}}{k_{BA} + k_{CO}} = -1.5 \frac{25/10}{20} = -1.5 \times \frac{2}{1}$
 $D_{BA} = -1.0$
 $D_{CD} = -1.5 \frac{k_{CD}}{k_{BA} + k_{CO}} = -1.5 \frac{2/10}{20} = -1.5 \times \frac{1}{1}$
 $D_{CB} = -0.5$
 $Step.u : 3 Resultant subscand moment.
 $M_{PB} = -56.55 2 M_{FC} = +18.35$
 $Step.u : 3 kansile Interaction Cycles:
 A^{TT}
 $M_{PB} = -56.55 2 M_{FC} = +18.35$
 A^{TT}
 N_{CD}
 $Step.u : 3 kansile Interaction Cycles:
 A^{TT}
 $M_{PB} = -56.55 2 M_{FC} = +18.35$
 A^{TT}
 N_{CD}
 A^{TT}
 A^{TT}
 N_{CD}
 A^{TT}
 N_{CD}
 A^{TT}
 $A^$$$$

Ű

Ó


•

Cycle 1: Rotation Contribution
$$m_{1}^{0}(a)$$
 joint
 $m_{1}^{0} = R_{1}^{0} \int [M_{P_{1}}^{a} + \frac{r}{3} (m_{1}^{a} + m_{1}^{a})]$
(a) $\mathbf{R} = m_{Re} = -0.1 [-56.25 + 0.0] = +10.25$
 $m_{BR} = -0.2 (-56.25 + 0.0] = +10.25$
(a) $C = m_{CB} = R_{CB} [M_{FC} + M_{RC} + m_{DC} + m_{1}(b)]$
 $= -0.34 \Gamma (18.2(+16.81 + 0.0) = -13.1))$
 $m_{CD} = R_{CD} [M_{FC} + m_{BC} + m_{0}c] + m_{1}c_{0}]$
 $= -0.125 [18.25 + 16.88 + 0.10] = 0.13.1)$
 $m_{CD} = R_{CD} [M_{FC} + m_{BC} + m_{0}c] = -1.0 (+10.25 + 0.0)$
 $m_{1}^{a} eBA = Dea [m_{BA} + m_{AB} + m_{CD} + m_{DC}] = -1.0 (+10.25 + 0.0)$
 $m_{1}^{a} eBA = Dea [m_{BA} + m_{AB} + m_{CD} + m_{DC}] = -0.5 [10.25 + 0.0)$
 $m_{1}^{a} eBA = Dea [m_{BA} + m_{AB} + m_{CD} + m_{DC}] = -0.5 [10.25 + 0.0)$
 $m_{1}^{a} eBA = Dea [m_{BA} + m_{AB} + m_{CD} + m_{DC}] = -0.5 [10.25 + 0.0)$
 $m_{1}^{a} eBA = m_{BC} = R_{BC} [m_{FB} + m_{CB} + m_{DC}] = -0.5 [10.25 + 0.0)$
 $m_{1}^{a} eBA = m_{BC} = R_{BC} [m_{FB} + m_{CB} + m_{BB} + m_{BB}]$
 $= -0.3 [-56.25 - 13.13 + 0 - 6.86] = 22.80$
 $m_{BA} = R_{BA} [m_{FB} + m_{CB} + m_{AB} + m_{BB}]$
 $= -0.2 [-56.25 - 12.13 + 0 - 6.86] = 22.80$
 $m_{BA} = R_{BA} [m_{FB} + m_{CB} + m_{AB} + m_{BB}]$
 $= -0.2 [-56.25 - 12.13 + 0 - 6.86] = 15.2$
(a) foint C:
 $m_{CB} = R_{CB} [m_{FC} + m_{BC} + m_{DC} + m_{CD}]$
 $= -10.316 [+18.25 + 22.50 + 0 - 3.03]$
 $= -10.140$
 $m_{CD} = R_{CD} [m_{Fc} + m_{RC} + m_{DC} + m_{CD}]$

I

$$= -0.125 \left[+ 18.25 + 22.84 + 0 - 3.03 \right] = -4.71$$

b) Displacement Indones:
m'BA = -1.0 $\left[+ 15.26 + 0 - 4.71 + 0 \right] = -10.55$
m'O = -0.5 $\left[+ 15.26 + 0 - 4.71 + 0 \right] = -10.55$
m'O = -0.5 $\left[+ 15.26 + 0 - 4.71 + 0 \right] = -5.28$
Cycle 3:
(a) Rotation Indones:
joint R: mgc = -0.2 $\left[-56.25 - 14.12 + 0 - 10.55 \right]$
 $= +24.28$
mBA = -0.2 $\left[-56.25 - 14.12 + 0 - 10.55 \right]$
 $= +16.18$
joint C: mcB = -0.245 $\left[+ 18.25 + 24.28 + 0 - 5.28 \right]$
 $= -13.93$
meD = -0.125 $\left[48.25 + 24.28 + 0 - 5.28 \right]$
(b) Displacement Jados: = -4.66
m'BA = -1.0 $\left[+ 16.18 + 0 - 4.66 + 0 \right] = -11.52$
m'BA = -0.2 $\left[-56.25 - 13.93 + 0 - 11.62 \right] = 24.52$
mBA = -0.2 $\left[-56.25 - 13.93 + 0 - 11.62 \right] = 24.52$
mBA = -0.2 $\left[-56.25 - 13.93 + 0 - 11.62 \right] = 24.52$
mCB = -0.125 $\left[18.25 + 24.52 + 6 - 5.76 \right] = -13.88$
mCD = -0.125 $\left[18.25 + 24.52 + 6 - 5.76 \right] = -13.88$
mCD = -0.125 $\left[18.55 + 0.463 + 0 \right] = -11.92$
mCD = -0.5 $\left[+ 16.35 + 0 - 4.63 + 0 \right] = -11.92$
m'CD = -0.5 $\left[+ 16.35 + 0 - 4.63 + 0 \right] = -11.92$
m'CD = -0.5 $\left[+ 16.35 + 0 - 4.63 + 0 \right] = -11.92$
m'CD = -0.5 $\left[+ 16.35 + 0 - 4.63 + 0 \right] = -5.86$

Cycle - 5 °
(Cycle - 5 °
(B) Robolion failbox:
Joint B ° mBc = -0.2
$$\left[-56.25 - 13.88 + 0 - 11.72\right] = +16.32$$

mBA = -0.2 $\left[-56.25 - 13.88 + 0 - 11.72\right] = +16.32$
Joint C ° mcB = -0.395 $\left[+18.25 + 24.56+0 - 5.86\right] = -13.26$
mcD = -0.125 $\left[+18.25 + 24.56+0 - 5.86\right] = -13.26$
mcD = -0.125 $\left[+18.25 + 24.56+0 - 5.86\right] = -4.62$
(B) Displaquent fador:
mi BA = -10 $\left[+16.35 + 0 - 4.62+0\right] = -5.82$
Step-6: And monerate:
mi Mij = Migi + 2.01 + 5 + 0.462+0] = -5.82
Step-6: And monerate:
mi Mij = Migi + 2.01 + 5 + 10.84 + 10 = 2.582
Mag 0 + 13.24 0 -14.92 + 121.00
Mag 0 + 13.24 0 -14.92 + 121.00
Mag - -56.25 + 44.92 + 13.86 - 4.15.09
McB 0 -9.24 0 -5.87 - 15.11
MAR 0 0 +16.12 -14.93 4.84
Mor 0 0 +16.12 -14.93 4.84
Mor 0 0 -14.92 -5.87 -15.11
MAR 0 0 -14.62 -5.87 -16.49
McD 0 -9.24 0 -5.87 -16.49
Mcd 18.25 -27.72 4.34.56 - 4.15.09
McD 0 -9.24 0 -5.87 -16.49
Mcd 10 -9.24 0 -5.87 -16.49
McD 0 -9.2

J

• 0 0 • 0 • • • • • 0

(a)
$$B = M_{BC} = R_{BC} \left(M_{FB} + m_{cg} + m_{AB} + m_{BB} + m_{BB} \right)$$

 $= -0.2102 \left[-2.0 + 0+0+0 \right] = +0.029$
 $M_{BA} = -0.2853 \left[-2.0 + 0+0+0 \right] = +0.5341$
(a) $C = m_{eB} = R_{cB} \left[M_{FC} + m_{BC} + m_{PC} + m_{cD} \right]$
 $= -0.25 \left[2.0 + 0.029 + 0+0 \right] = -0.607$
 $m_{eB} = R_{eD} \left[M_{FC} + m_{BC} + m_{OC} + m_{cD} \right]$
 $= -0.25 \left[+ 2.0 + 0.029 + 0+0 \right] = -0.607$
 $D_{e}^{0} + D_{e}^{0} + D_{e}^{0} + D_{e}^{0} + D_{e}^{0} + D_{e}^{0} \right]$
 $= -0.25 \left[+ 2.0 + 0.029 + 0+0 \right] = -0.607$
 $D_{e}^{0} + D_{e}^{0} + M_{e}^{0} + m_{e}^{0} \right]$
 $= -0.5581 \left[1 \left(20.571 + 0 \right) + 1.5 \left(-0.607 + 0 \right) \right]$
 $= -0.5581 \left[1 \left(20.571 + 0 \right) + 1.5 \left(-0.607 + 0 \right) \right]$
 $= +0.189$
 $m_{cB} = D_{cB} \left[1 \left(m_{BB} + m_{AB} \right) + 2c_{cD} \left(m_{cD} + m_{DC} \right) \right]$
 $= +0.29 \left[1 \left(m_{BB} + m_{AB} \right) + 2c_{cD} \left(m_{cD} + m_{DC} \right) \right]$
 $= +0.213$.
 $C_{ude-2} : (a) Radadson factors.
(a) $B = m_{BC} = -0.2857 \left[-2.0 - 0.607 + 0.0189 \right] = +0.691$
 $m_{BA} = -0.2857 \left[-2.0 - 0.607 + 0.0189 \right] = +0.691$
 $m_{BA} = -0.2857 \left[-2.0 - 0.607 + 0.0189 \right] = -0.692$
 $m_{CD} = -0.25 \left[+2.0 + 0.518 + 0 + 0.21 \right] = -0.692$
 $m_{CD} = -0.25 \left[+2.0 + 0.518 + 0 + 0.21 \right] = -0.692$
 $m_{CD} = -0.25 \left[+2.0 + 0.518 + 0 + 0.21 \right] = -0.692$
 $m_{BA} = -0.5581 \left[1 \times 0.691 - 1.570.682 \right] = +0.184$
 $m_{CD} = -0.6294 \left[1 + 0.691 - 1.570.682 \right] = +0.209$$

Cycle.	-3: @ Re	station fact	220			
a B	= MBC	= - 0· 2143 (-2.0-0.	683+10+0,	186] = +0.535	
	mBA =	-0.2857 [-2:0 -0.61	83+ 0+0.18	6]=+0.712	
€ C	= mers =	-0.25 [+ 2.	0 + 0.535	40+0.20	9] = -0.686	
1.1	$m_{c0} =$	-0125[-120	+0.625.	+0+0.207] = -0.686	
		I Jactor!				
×	n'BA = 0	5581 [+17	(0. 713 to	0- 1.540	062 (0+ 280 C	
8	n'epo	6229 [+1 ×0	·H340-1.	5 4 0.686	+0)=+0.198.	
Storila	rely cycle	e-u & Cy	cle 5.		- ret	oat
5) Fim	al more	d's		MERCINEA	Bt 2mab-rat	b
	RAij = r	1Fij + 2mij-	ب ب أ (يعم +	ij =)		
Mij	MFij	2 mig	ຫງຳ	รถ่ำ	Finital	
MBA	0	+ 1.436	0	+0.171	+1.607	
MBC	- 2.0	41.1136	-0.683		-1.607	
MCB	+2:0	-1.366	0.528	-	+1.172	
Med	+2.0	-1.266	+0.538	-	+ 1,174	
MAL	Ø	-1.166	0	+0.192	-1.174	
MDC	0	6	-0.687	+0.192	-0:491	
t.'607	3.0 kev m	1.123			- C	
	A.8.89 D	0.491	A			

L

•

•

Continuous beams ! The final deflected shape of a A MAB span AB of a continuous bearn + LABEL-Under loads let MAB & MBA one moments developed OA & OB are rotations at A & B due to impoud lander The slope deflection equation for span AB, et joint A is: MAB = MFAB + 2 E KAB (20A + DR) ____ D where; KAB = IAB . MAB = MFAB + 4 EKABOA + 2 EKAB OB MAB = MFAB+ 2 MAB+ MBA - 2 where by dependion mAB = 2 E KAB. OA & MBA = 2 E KAB · 00-(1) MAB = solational contribution of end A to MAB, MBA = rotational contribution of end. 3 to MAB. S MAB=0 1 from eq. @ $\sum_{B} MFAB + \sum_{B} (2mAB + mBA) = 0$ let MFA - resultant restraint moment at A. MFA = E MAB -6 from egn - (E MAB = -1/2 (MFA+ E MBA) - 6 For member AB, MAB = KAB . E MAB. -

Procedure for kan's Melhod:

Step-1: Calculate the fixed end moments (MF; j) in all the members of the structure & enter there outside the ader square.

Step-2: Calculate the (k) values & rotation factors (Rig) to all members meeting at each foint. There values are entered outside the first square but in side the second square towards each member.

Step-3 & Find the resultant restraint moment at each joint wing eq-6. Enter there values of resultant destraint moment within the same equare at each joint.

Step-4: Compute notadional contribution (mij) of the two ends of all the members by Gauss-Seidel iteration from cq- (g), daking mij = 0 at all foints etaeting with the approximation that 0:=0. Continue the iteration through several cycles till practically the some values of mij are obtactived in two successive cycles. Each cycle gives improved approximation for the rodational contaitudion. Att

there values of mij one entered.

Step-59 Using - eg-0 determine member end rooments Mij. Kani's Melhod: This melhod was developed by "Gauper kani" of Geomany.

- ⇒ This method is an excellent method extension of the slope deflection method.
- =) kani's method ie also known as autothon contribution method.
- Rotation contribution method is used to conducts of etalliphally indeterminate strougtures, like continous beams, Portal frames etc.

Prb. Analysis of Continuous beam including settlement of Support Analyse the continuous beam shown below @ by kan's method if the support B yields by grown, Jake Gim 1x10¹² Norm Through out. Draw B.M.D Gim 1x10¹² Norm

A $\frac{1}{1+2m}$ $\frac{20 \text{ kn/m}}{90 \text{ kn/m}}$ $\frac{1}{1+10}$ $\frac{1}{10}$ $\frac{1}{1$

Sol:- Fined End Moments:

$$MEAB = -\frac{Wab}{l^2} - \frac{6EId}{l^2}$$

$$= \frac{60 \times 2 \times 1^2}{3^2} = \frac{6 \times 1 \times 10 \times 0.009}{3^2}$$

•

•

•

Ó

Ö

3) Resultant Restraint Moments : MFB = MFBA + MFBC = 20.67 + (-58.5) = -37.83 KNim 4) Rotation Contribution Table: A-1933 20.67 0 39 0 -58.5 61.50 -20 00 Miab Miba Mibe Mich Mide Mide 12.489 6.279 0 0 0 0 12.489 6.289 0 0 O n Rodation Contribution Moments: Mab=0 Mbq= 12.439 Mbc= 6.299 Mcb=0 Mdc=0 mcd=0 5) Final Moments : MAB : MFAB + 2 Mas + M'ba = -19.33 + 0 + 12.489 = -6.841 know MBA = MFBA + am'ba + m'ab = 20.67 + 2x 12.489 + 0 = 45.698 KN.m = 45.47 MBC = MPBC + 2 Mbc + Mcb = - 58.5 + 2x 6.279 7 0 = - 45.942 kN.m = -45.94 MCI = MFCB + 2 m'(b+ mbc = 61.5+(2×0) + 6.279 = .67.779 kN.m MED 2 Myco + 2mco + Mde = - 20 + 0 + 0 = - 20 knm MDL = 0

U

0

•

•

0000

•

•

•

00000

000000

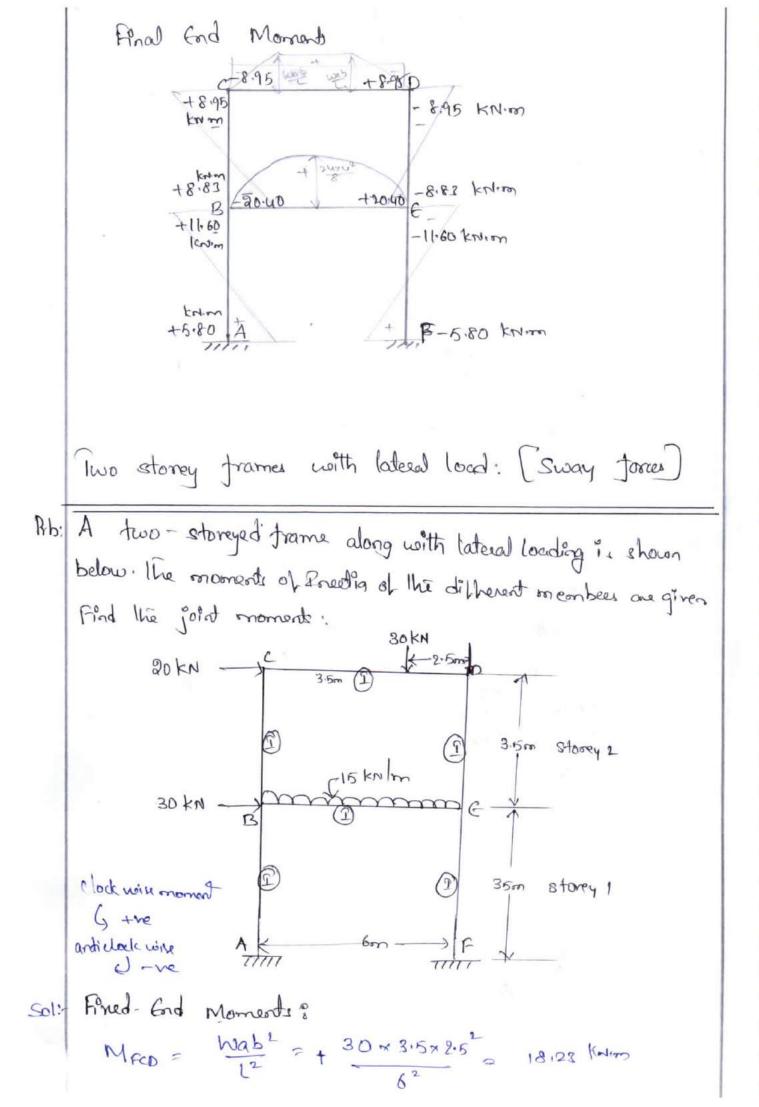
0

000

0

$$MFBC = -\frac{Wl^2}{12} = -\frac{2uxu^2}{12} = -32 kNim$$

b) Rotation Factors:


Joint	Member	14	ZK	D.F	R.F
		- 1 ¹¹		K/KK	=-0.5×09
	BA	2514		0.4	- 45
ß	BEI	1/2×45=1/2	52/4	0.4	-1/5
	BC	8-14		0.2	-410
С	CB	214	REAL	0.5	-114
	CDI	1/2×24=1	4	0.5	- 1/4
	C Kcb = # Kbc = B	= 1/2 × 2 = 1/4 = 1/4 = 1/4			
	A-11(1	= 1/2: 4 = 1/2 = 2=	12		
c) Re	sultant R	estraint M	oments	0	
	M _{FC} = 1	VED + Mm		-15+1	151.

MFB - MFBE+ MFBA = -3240 = -32 kmm

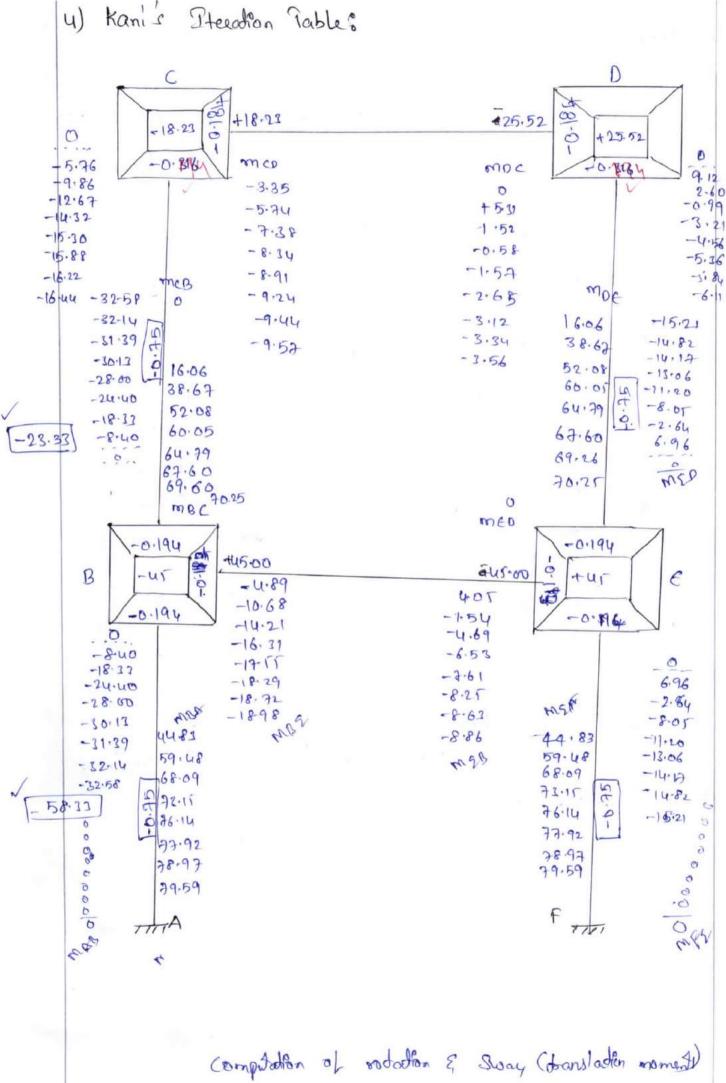
Rotation Contributions calculations by Iteration cycler. -1/4 - 15.00 -15.00 20 + 3.75 (mc) - 1/4 15+2.83) - 1/4 -3.04 +3.71 (+3.03 -15+2.9) 21,5 +3.04 +1.01 mcB (mBC) 3.04) 4410 + 2.90 3.75)+1/10= +2:8 +2.90 +2-13 - 1/10 -32-00 E -1/5 B -32.00 = (-32+3:25)+1== 5:65 +5.65 -41-= - (32+3.14) ×1/5 = 5.79 +5.29 = (- 22 + 3.03) *4 - 3.80. +5.10 45.65 (MBE) + 5.29 Cycle- 1 15.00 Of dale - 1 C C me R.F (MFC+ MCB+ MBC+ MAS mBA) = -14 [-15+0+0+0] = 3.71 mest Bil (mile - ment man) 0. ////// @B 1 10-10-10] = 3.21 - 11 ... A R.F [MFR + mGD + mBN + MAR] MBC -0[-31+3-75+8+0] $mBA = R \cdot \left[(m_{F13} + m_{BE} + m_{CD} + m_{DB}) = \right] - V_{F} \left[-32 + 0 + 3 \cdot 3i + 0 \right] = +5.65$

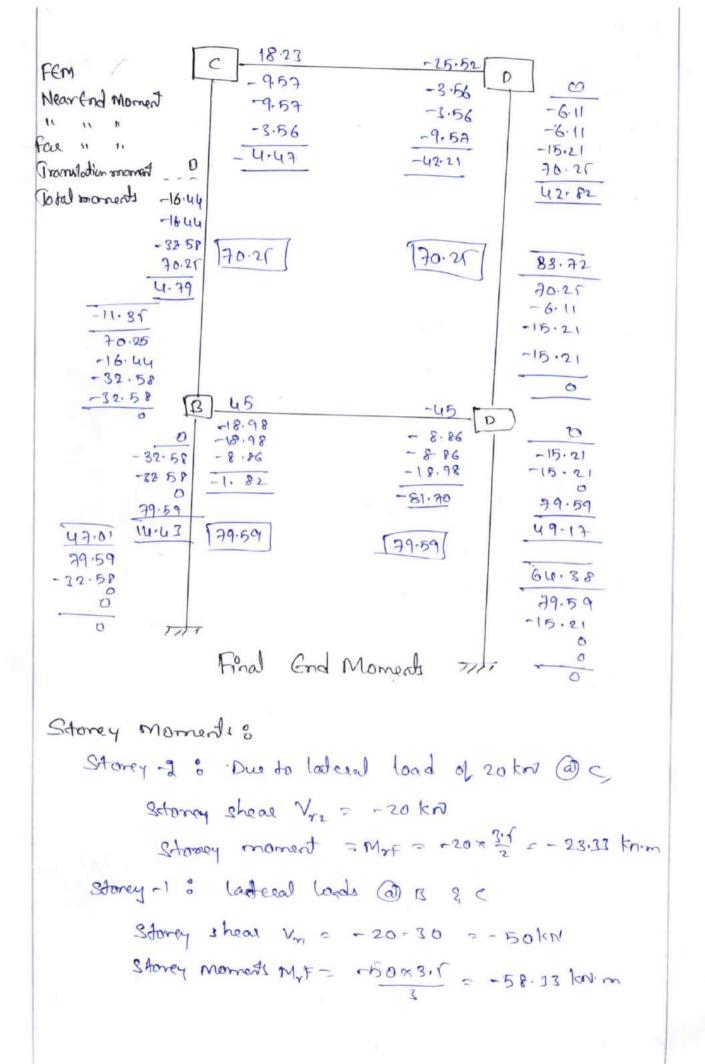
Resultand Resultant Respaint Moments $m_{BE} = R \cdot F \left[M_{FB} + \frac{m_{BA}}{m_{BA}} + \frac{m_{BA}}{m_{BB}} + \frac{m_{BA}}{m_{AB}} + \frac{m_{BA}}{m_{AB}} - \frac{m_{AB}}{m_{AB}} + \frac{m_{BA}}{m_{AB}} + \frac{m_{BA}}{m_{AB}}$ - - - 14[-32+3H]= 5.6F Un- E $m_{c0} = 12.F \left[M_{FC} + m_{BC} + m_{GAR} \right] = -1/4 \left[-15 + 2.62 + 0^{2} \right] = 3.0425$ @ c mcg = p.r. [mext mgc+ mgAg] = -14 [-15 +2.83+0] = 3.04 (B MBC = R.F. (MFB + MCD + MAB) = -1/10 (-32 + 3.04 + 0) = 2.896 MBE - R.F [MEB +3.04 + 0] = -1/5 [-12 Calculation of final moments: KO -15.00 C + 3.03 +3.03 + 2.03 +2.01 8.94 +2.90 + 8-96 + 8.80 + 3.01 + 3.99 -32.00 R KE +5.80 +5.80 15.80 +5.80 -20.40 0 41.60 MCD - MFCD+ 2mco+moc -15 + 2+3.02+ 0 +5.80

۲

 $MFBC = \frac{30 \times 3.5^{2} \times 2.5}{6^{2}} = -25.52 \text{ kN·m}$ $MFBC = + \frac{WL^{2}}{12} = \frac{+15\times6^{2}}{12} = +45 \text{ kN·m}; MFEB = -445 \text{ kn·m}$

2. Rotation Factor Table 3


0


0

Joint	Member	Reladive Stittness K	Sum Ek	D.F =	R.F=
	BA	\$ 13.5		14/2K	-0.5 × D.F -0.193
ß	8 ¢	216	0.739I	0.225	-0.112
	BC	213.5		0.386	-0.194
С	CD	216		0.363	-0.316
	DC	216	0.453 T	0.363	-0.184
D	DE	I13.5		0.631	- 0.316
	€.DE	£13.5	0.4639	0.631	-0:194
E	EB 2D	216 213-5		0.235	- 0, 112
	e.F	II3.5	0.739 I	0.386	-0.194.

3. D'eplacement factors :

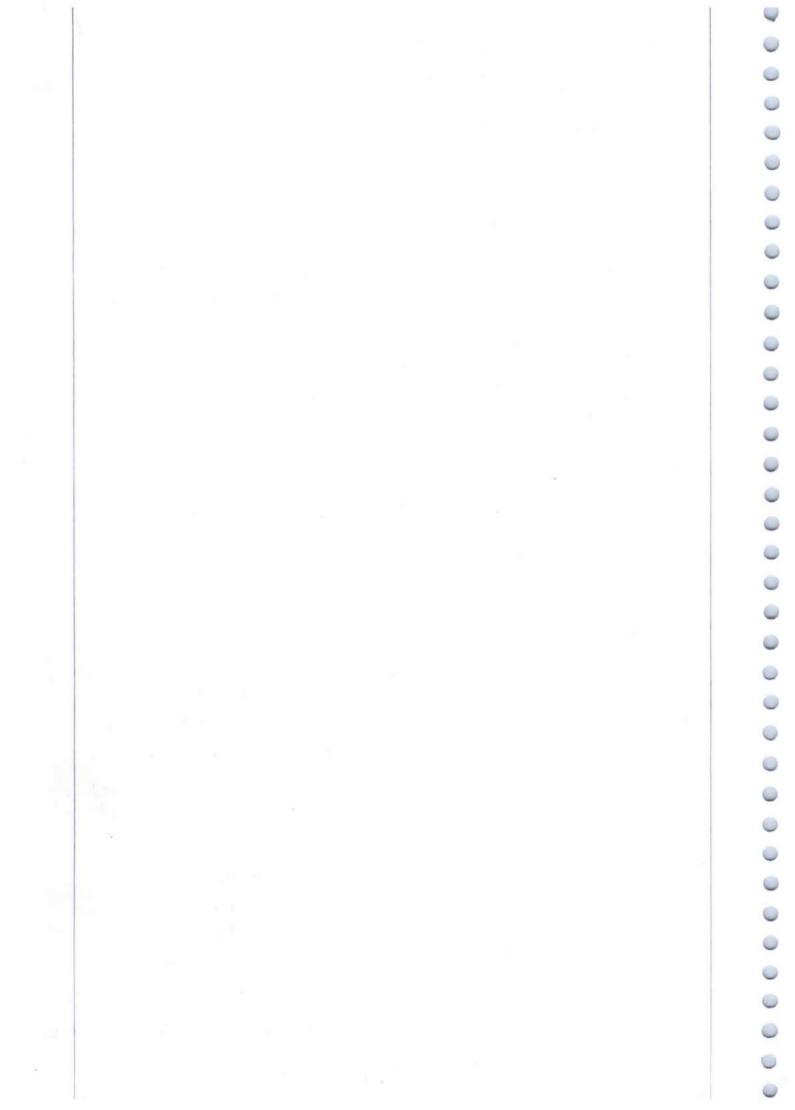
$D_{BA} = -1.5 \left[\frac{k_{BA}}{k_{BA} + k_{CB} + k_{DE} + k_{EF}} \right] = -1.5 \times \left[\frac{1/2 \cdot r}{(l(3 \cdot r) + l(1/2 \cdot r) + l(1/3 \cdot r))} + (1/2 \cdot r) + (1/2 \cdot r$
$= -1.5 \times 0.25 = -0.375$ + (12.5)
DEF = - 0375 BA = DEF = DEF = DPE = 0.375
D.F = 0.75= (0.375+ 0.171)

-

Cycle-13 Joint C & the rotation moment & translation moments are assumed to be zeen to start with. Sum of joint moments = 18.23 kov.m " of notation, @ end D = 0 [alsumed] 11 11 11 (Gend B = 0 11 " in translation of column CB below = 0 11 Total = 18.22 know MRCD = (-0.184) (18.23) = -3.35 kN.m MRCB = (-0.316) (18.23) =-5.761 (com Just D : Sum of joint moments = - 25.52 kovon " " rotation " @ 0 - - 3.35 low ... " " " A Q E = O (assumed) " in translation " Column DE= 0 " Total = -28.87 KN.00 MRDC = (-0.216) x (-28.87) = 9.12 kum MEDE = (-0184) × (-28.87) = 5.31 ledim Joint G : Sum of joint moments = - US koven 11 nordation 1. @ D= 5.21 n 11 11 11 11 @ B = O (alsume?) h h h (a) A = 0 hSum of downal this is of column (F. below = 0 " " e te v Ay 11 ta ED above F O " Fatel = - 39.69 tom

... MRED = $(-0.194) \cdot (-29.69) = 7.70$ kalim MREB = (-0.112) (-29.69) = 4.48 kalim MREB = (-0.194) (-29.69) = 4.48 kalim MREF = (-0.194) (-29.69) = 7.70 kalim MREF = (-0.194) (-29.69) = 7.70 kalim MREF = (-0.194) (-29.69) = 4.40 kalim MREF = (-0.194) (-29.69) = 4.

 $n \quad n \quad m \quad n \quad \Theta \text{ end } A = O^{-1} \text{ end } n \quad \Omega \text{ end } n$


(Jotal = U3.72 KNim MRBE = (-0.113) (U3.72) = - 10.94 knoim

MIRBC=MRRA = (-0.194) (43.72) = - 8.48 kovim MBC[-0194] (43.72) = - 8.48 kovim (alcubetron of Storey Moments;

storey - 2:

story moments: - - 23.32 lewin Refation ments of column @ end c of column BC = -5.76 koing 17 11 11 11 11 D 11 11 DE - 5.21 11 * 1 11 11 11 B & 11 Bez-8.481 11 2 . n 11 n n h (= 11 n DE= 7:20 h 31 Total = -24-56 MTBC = MTED = (-0.21 +) × (-24.56) = 18.42 101. torin Storry -1 ! Storey moments = -58.33 kov.m 11 1+ w in in in R in h ABERSius twim " " " Fe=7.70 " ~

MAAB = MTTE = (-0.75)x. (-59.11) = UUI33 kym

UNIT-1:Objective Questions:

1.In moment distribution method ,the sum of distribution factors of all the members meeting at any joint

- a) zero
- b) <1
- c)1
- d) >1

2. In the slope deflection equations, the deformations are caused by

- a) shear force
- b) Bending moment
- c) axial force
- d) none
- 3. Which of the following methods of structural analysis is a force method ?
 - a) slope deflection method
 - b) column analogy method
 - c) moment distribution method
 - d) none of the above
- 4. Which of the following methods of structural analysis is a displacement method ?
 - a) moment distribution method
 - b) column analogy method
 - c) three moment equation
 - d) none of the above
- 5. In the displacement method of structural analysis, the basic unknowns are
 - a) displacements
- b) force
- c) displacements and forces
- d) none of the above

6. Which of the following is not the displacement method?

- a) Equilibrium method
- b) Column analogy method
- c) Moment distribution method
- d) Kani's method
- 7. Select the correct statement
- a) Flexibility matrix is a square symmetrical matrix
- b) Stiffness matrix is a square symmetrical matrix
- c) both (a) and (b)
- d) none of the above

8. When a load crosses a through type Pratt truss in the direction left to right, the nature of force in any diagonal member in the left half of the span would

a) change from compression to tension

- b) change from tension to compression
- c) always be compression
- d) always be tension

9. The ratio of a stiffness of a beam at a joints with one end hinged and other end fixed is

- a) 1/2
- b) 3/4
- c) 1
- d) 4/3

10Moment distribution method is developed by

a) Maney

b) Hardy cross

c) Muller

d) Gumbel

Fill in the blanks:

1. If the free end of acantilever of span I and flexural rigidity EI undergoes a unit displacement , the bending moment induced at the fixed end ------[IES-08]

2. The factor by which the applied moment is multiplied to obtain the end moment of any member is known ------

3. In simply suppoted beam carrying point load at centre , slope is maximum at ------

4. In simply suppoted beam carrying point load at centre deflection is maximum at ------

5. In cantilver deflection is maximum at -----

6. Moment distribution method is developed by -----

7. The relative stiifness of member with far end fixed is------

8. The relative stiifness of member with far end hinged is-----

9.. A single bay single storey portal fgrames has a hinged left support and a fixed right support .it is loaded with udl on the beam .The deformation of the frame is------[GATE-95]

10.the factor by which the moment at simply supported end is multiplied to get moment carried over to the other end is------

Key:

1.c 2.b, 3.b,4.a,5.a ,6.b,7.c,8.a 9.b, 10.b Fill in the blanks: 1.6EI/L², 2. Distribution factor 3.ends 4. Centre 5. Free end 6.Hardy cross 7.I/L 8.3I/4L 9- it would sway to the left side, 10.Carry over factor. UNIT-2:Objective Questions:

SLOPE DEFLECTION METHOD

o

0

0

0

0

۲

۲

0

Analysie of Single Bay - Single storey Ported Frames by Slope Deplection Melhod Including Side Sway. Shear-force & B.M.D Clastic curre:

When portal frames eway, the foint translations become additional unknown quantities. Some additional conditions will, therefore, be required for analying the frame. -> The additional conditions of equilibrium are obtained from the consideration of the shear force exerted on the structure by the external loading.

A the homestal shear exceeded by a member is equal to the algebraic sum of the extend toading moments at the ends of the holendied by the length of the member -) Thus the homesontal shear resistance of all such recorded

can be found & the algebraic sum of all such fries

PITT

HA A

Ho -57

The homental reactions were given by in

 $H_{A} = \frac{M_{AB} + M_{BA} - P_{L}}{L_{1}} \rightarrow \textcircled{O}$ $H_{O} = \frac{M_{CO} + M_{CC} + \frac{1}{2} \frac{\omega L_{2}^{2}}{L_{2}} \rightarrow \textcircled{O}}{L_{2}}$

∑M = 0 − (3)

- HA + HD + P - Wl2 = 0

The above equation is also known as shear equation.

By substituting values we get.

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + M_{CD} + M_{OC} + \frac{1}{2} W_{L}^{2} + P - W_{L} = 0 - 0 \end{array}$$

$$e_{1} n_{C} gives this general expression of shear eqn.
$$\begin{array}{c} e_{1} n_{CD} + M_{DC} + \frac{1}{2} W_{L}^{2} - W_{L} = 0 \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} + M_{CD} + M_{DC} + \frac{1}{2} W_{L}^{2} - W_{L} = 0 \end{array}$$

$$\begin{array}{c} e_{1} & M_{AB} + M_{BA} + \frac{M_{CD} + M_{DC} - W_{L}}{L} = 0 - W_{C} \end{array}$$

$$\begin{array}{c} e_{1} & M_{AB} + M_{BA} + \frac{M_{CD} + M_{DC} - W_{L}}{L} = 0 - W_{C} \end{array}$$

$$\begin{array}{c} W_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC} - W_{L}}{L} = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} M_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} W_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} W_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} W_{AB} + M_{BA} - P_{h} + \frac{M_{CD} + M_{DC}}{L} + P = 0 - W_{C} \end{array}$$

$$\begin{array}{c} W_{AB} + M_{BA} - \frac{M_{CD} + M_{DC}}{L} + \frac{M_{CD} + M_{DC}}{L} + \frac{M_{CD}}{L} + \frac{M_$$$$

•

$$\begin{array}{c} \therefore M_{DC} = 0, \ D_{D} \ can be expressed in terms of D_{C}.\\ M_{DC} = 0 = 20 + D_{C} - 32\\ (07)\\ D_{D} = \frac{3R - D_{C}}{2}\\ \textcircled{(07)}\\ \hline D_{D} = \frac{3R - D_{C}}{2}\\ \hline D_{C} = \frac{3R - D_{C}}{2}\\ \hline D_{C} = \frac{3R - D_{C}}{2} = 0\\ \hline \frac{3C k (20g - 3R) + 2C k (20g + 0_{C}) = 0}{8C k \delta_{R} - 6(kR + 2Ck O_{C} = 0)}\\ \hline (07) \ M_{CG} + M_{LB} = 0.\\ \hline (07) \ M_{CG} + \frac{3R - D_{C}}{2} + 3R = 0\\ \hline M_{C} + 0g + \frac{3R - D_{C}}{2} + 3R = 0\\ \hline \dots \ M_{D} + \frac{M_{D} \alpha}{4} + \frac{M_{CG}}{2} + 3R = 0\\ \hline \dots \ M_{D} + \frac{M_{D} \alpha}{4} + \frac{M_{CG}}{4} + \frac{N - 0}{2}\\ \hline D_{C} = \frac{M_{B} + M_{B} \alpha}{4} + \frac{M_{CG}}{4} + \frac{N - 0}{2}\\ \hline D_{C} = \frac{M_{B} + M_{B} \alpha}{4} + \frac{M_{CG}}{4} + \frac{N - 0}{2}\\ \hline D_{C} = \frac{M_{B} + M_{B} \alpha}{4} + \frac{M_{CG}}{4} + \frac{N - 0}{2}\\ \hline D_{C} = \frac{M_{B} + M_{B} \alpha}{4} + \frac{M_{C}}{4} + \frac{M_{C} \alpha}{2} + \frac{N - 0}{2}\\ \hline D_{C} = 0\\ \hline D_{C} = \frac{M_{B} - 3D}{7k} + 2Ck + \left(\frac{SR - 0C}{2}\right) - \frac{OR}{3R} = 0\\ \hline D_{C} = \frac{GO_{C}}{6} + \frac{2N}{7k} + 2Ck + \left(\frac{SR - 0C}{2}\right) - \frac{OR}{3R} = 0\\ \hline D_{C} = \frac{GO_{C}}{6} - \frac{15R + \frac{M_{C}}{C\alpha}} + 10C = 0\\ \hline \hline Trom equation a R, \ D_{C} = SR - M_{D}R \end{bmatrix}$$

D

D

D

D

D

•

0

۲

0

0

0

0

•

•

•

•

•

0

•

•

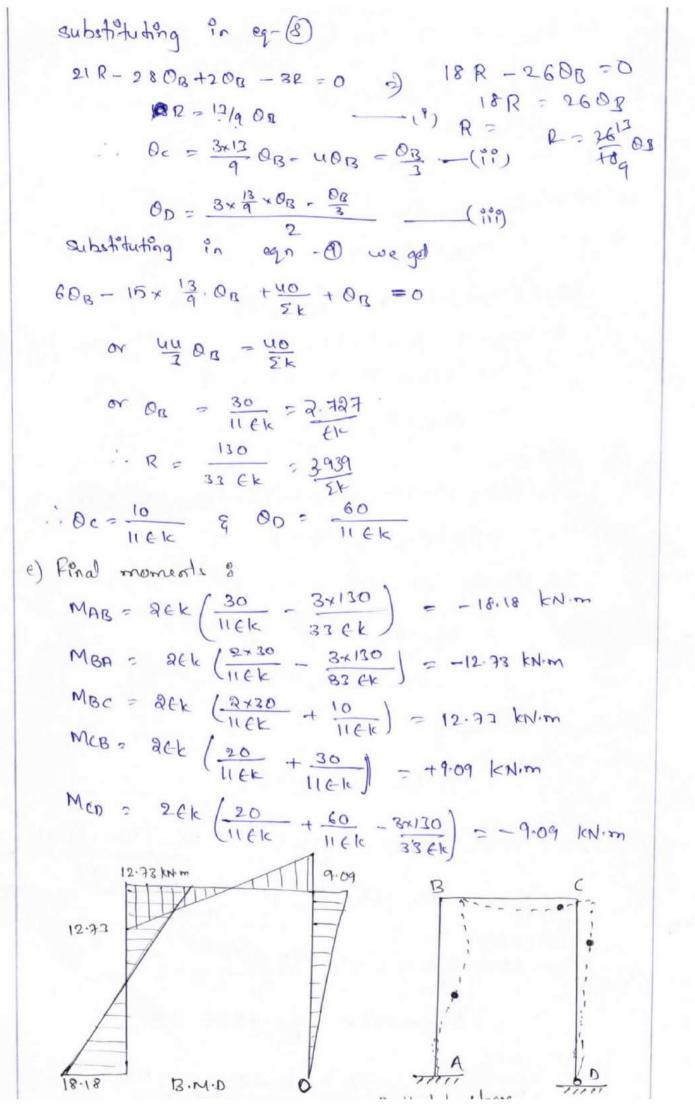
•

0

D

D

D


D

D

D

1

•

D

•

$$3\theta_{c} + \theta_{B} - \frac{\pi}{8} \delta - \frac{\pi}{6c_{T}} = 0 \qquad - 6$$
d) Sheas equadion:

$$\frac{M_{AB} + M_{BB}}{L} + \frac{M_{CD} + M_{DL}}{L_{2}} = \frac{W_{C}}{2}$$
or
$$\frac{C_{2}(2\theta_{B} + \theta_{B} - \delta) + C_{3}(2\theta_{B} + \theta_{B} - \delta)}{3} + \frac{C_{T}}{2}(2\theta_{C} - \frac{3\delta}{4}) - \frac{9}{4} + \frac{3}{3}$$

$$+ \frac{C_{T}}{2}(\theta_{C} - \frac{3\delta}{4}) + \frac{\delta}{3} = \frac{9\pi U}{2}$$
of $\theta_{0} + U\theta_{B} - U\delta + \delta\theta_{B} + U\theta_{A} - U\delta + 3\theta_{C} - \frac{9}{4}d + \frac{3\theta_{C}}{2}$

$$-\frac{9}{6}d = \frac{U\theta}{CT}$$
or $12\theta_{A} + 12\theta_{B} + \frac{9}{2}\theta_{C} - \frac{U_{L}}{U}\delta = \frac{U\delta}{CT}$
or $12\theta_{A} + 12\theta_{B} + \frac{9}{2}\theta_{C} - \frac{U_{L}}{U}\delta = \frac{U\delta}{CT}$

$$1\frac{1}{4} \log - 4\delta_{13} + \frac{1}{9} \log - 9 = 0$$
or $\theta_{B} = \delta - 2\theta_{B} = 0$
or $\theta_{B} = \delta - 2\theta_{B} = 0$
or $\theta_{B} = \delta - 2\theta_{B} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{A} + 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{C} + 3\theta_{A} - 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{C} + 3\theta_{A} - 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{C} + 3\theta_{A} - 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{C} + 3\theta_{A} - 3\delta - \frac{3}{8cT} = 0$
or $\theta_{C} - 3\theta_{C} + 3\theta_{A} - 3\delta - \frac{3}{8cT} = 0$

•

•

$$\begin{aligned} 30_{c} + d - 20_{0} - \frac{3}{6} \delta - \frac{3}{6(1)} = 0 - (2) \\ or \quad 30_{c} - 20_{0} + \frac{5}{8} \delta - \frac{3}{6(1)} = 0 - \\ \\ \text{Subshiftshing like values of 0 g g 0 c in eqn - 9 we get \\ 120_{0} + 12d - 240_{0} + \frac{24}{4(c_{T})} + \frac{62}{2} 0_{0} - \frac{24}{2} \delta + \frac{41}{6} \delta - \frac{418}{c_{T}} \\ or \quad 0_{0} = \frac{330}{156(c_{T})} + \frac{44}{38} \delta \\ \\ \text{Subshiftshing like values of 0 c in 0n in eq-12, we get \\ \\ \frac{9}{20_{T}} + \frac{19x320}{156c_{T}} + \frac{414}{38} \delta - 9 \delta + \frac{5}{8} \delta - \frac{4}{6c_{T}} = 0 \\ \\ \frac{959}{312} \delta = -\frac{3295}{38c_{2}} (or) \delta = -\frac{3295}{38c_{2}} + \frac{312}{969} = -\frac{13580}{959(c_{T})} - (1) \\ \\ \theta_{c} = \frac{3}{20c_{T}} - \frac{4x}{28} + \frac{13580}{969(c_{T})} = -\frac{642}{c_{T}} - (1) \\ \\ \theta_{c} = \frac{3}{20c_{T}} - \frac{4x6u_{1}}{c_{T}} + \frac{3x12580}{959(c_{T})} = -\frac{644}{c_{T}} - (1) \\ \\ \theta_{c} = \frac{3}{20c_{T}} - \frac{4x6u_{1}}{c_{T}} + \frac{3x12580}{62} = -\frac{642}{c_{T}} - (1) \\ \\ \theta_{c} = \frac{3}{20c_{T}} - \frac{4x6u_{1}}{c_{T}} + \frac{3x12580}{62} = -\frac{642}{c_{T}} - (1) \\ \\ \theta_{c} = \frac{3}{20c_{T}} - \frac{4x6u_{1}}{c_{T}} + \frac{3x12580}{62} = -\frac{642}{c_{T}} - (1) \\ \\ \theta_{c} = \frac{13580}{950(c_{T})} + \frac{2x6u_{1}}{c_{T}} + \frac{13580}{959(c_{T})} = +5.09 \text{ kmm} \\ \\ \\ M_{B} = CT \left(\frac{-2x132}{c_{T}} - \frac{642}{c_{T}} + \frac{13580}{c_{T}} \right) + 15 = -5.09 \text{ kmm} \\ \\ M_{0} = \frac{CP}{c} \left(-\frac{2x094}{c_{T}} + \frac{3x}{6T} + \frac{3550}{959(c_{T}} \right) - \frac{8}{3} = +1.31 \text{ kmm} \\ \\ M_{0} = \frac{CP}{c} \left(-\frac{2x094}{c_{T}} + \frac{3x}{4} + \frac{13580}{959(c_{T}} \right) + \frac{8}{3} - \frac{1.3580}{959(c_{T})} - \frac{8}{3} = +1.31 \text{ kmm} \\ \\ M_{0} = \frac{CP}{c} \left(-\frac{2x094}{c_{T}} + \frac{3x}{4} + \frac{13580}{959(c_{T})} \right) + \frac{8}{3} - \frac{1.3580}{959(c_{T})} - \frac{8}{3} = +1.31 \text{ kmm} \\ \\ M_{0} = \frac{CP}{c} \left(-\frac{2x094}{c_{T}} + \frac{3x}{4} + \frac{13580}{959(c_{T})} \right) + 2.67 - +7.52 \text{ kmm} \\ \end{array}$$

ħ

D

D

D

D

D

0

0

0

0

0

•

•

0

•

0

0

•

•

0

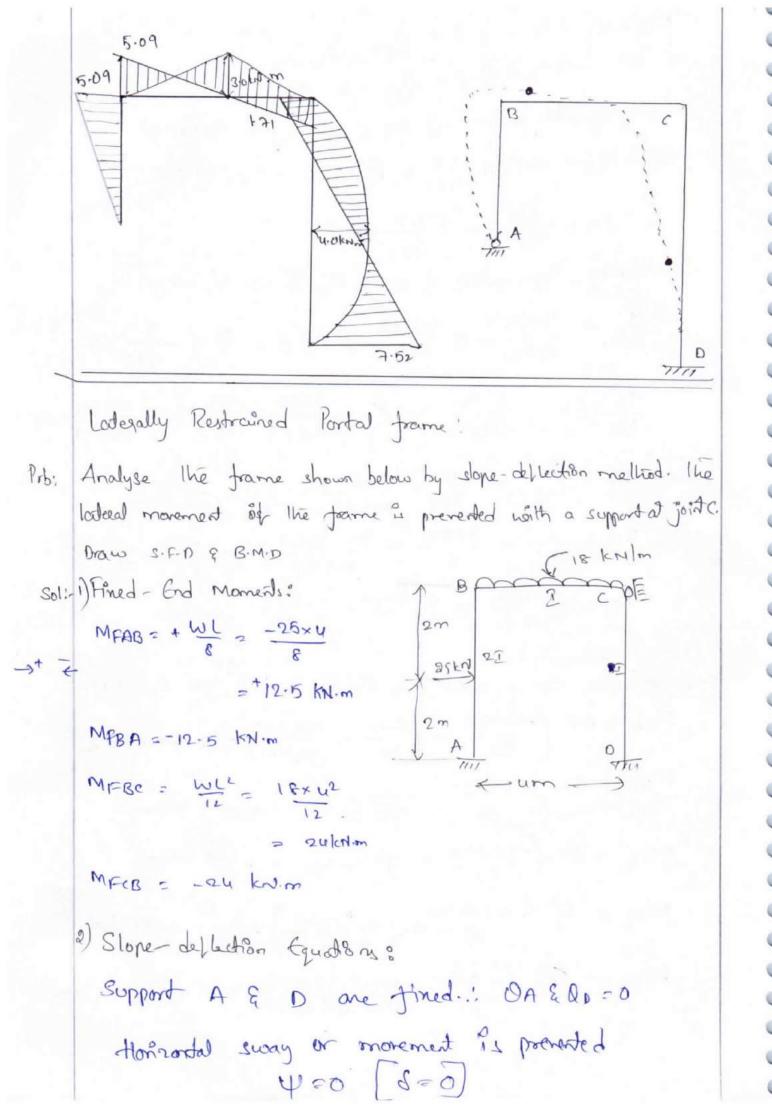
0

0

۲

0

D


D

D

D

D

.

$$M_{AB} = M_{F} A_{R} + \frac{2CT}{L} (20_{A} + 0_{3})$$

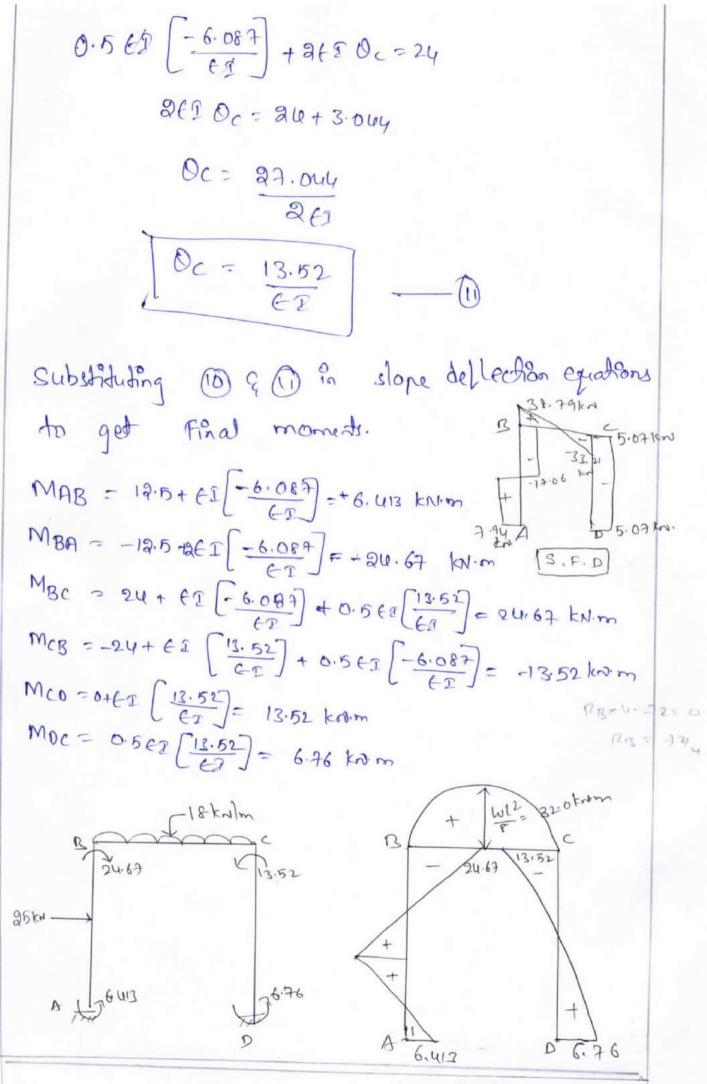
$$= 12.5 + \frac{2(2T)}{L} (20_{B} + 0_{3})$$

$$M_{AR} = +12.5 + CTO_{R} - 0$$

$$M_{RA} = -12.5 + \frac{2(2R)}{L} (20_{R} + 0_{A})$$

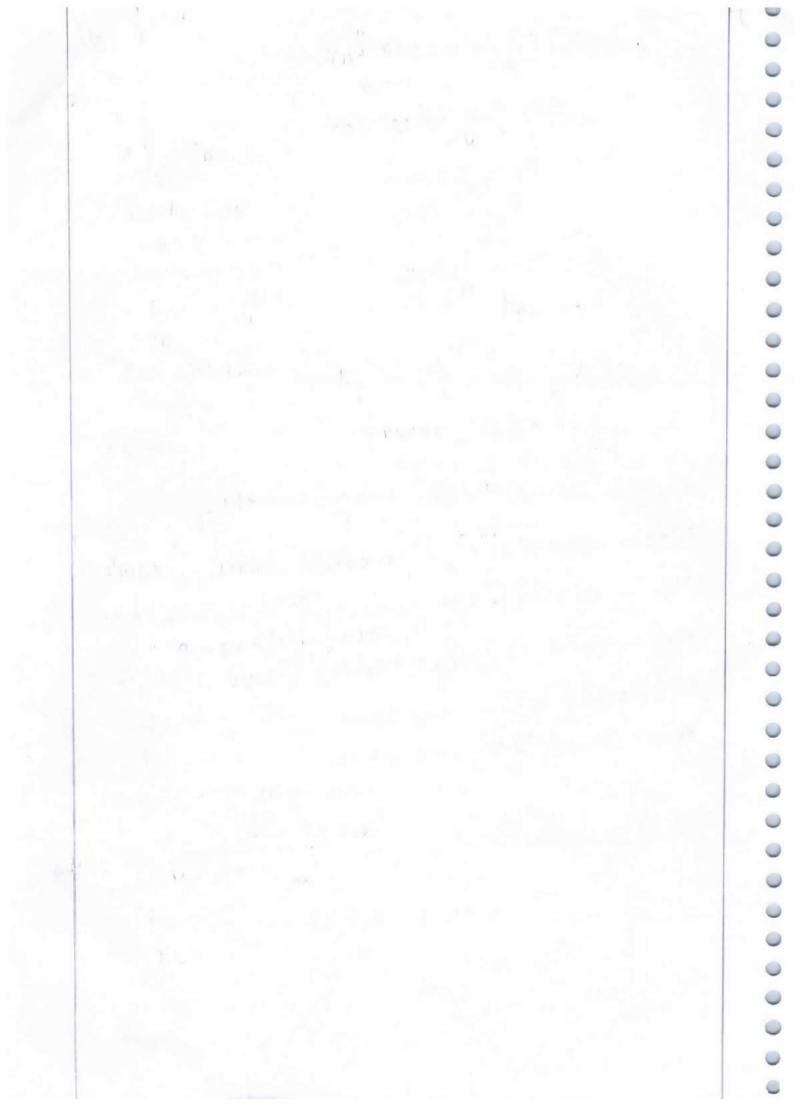
$$= -12.5 + \frac{2(2T)}{L} (20_{R} + 0_{A})$$

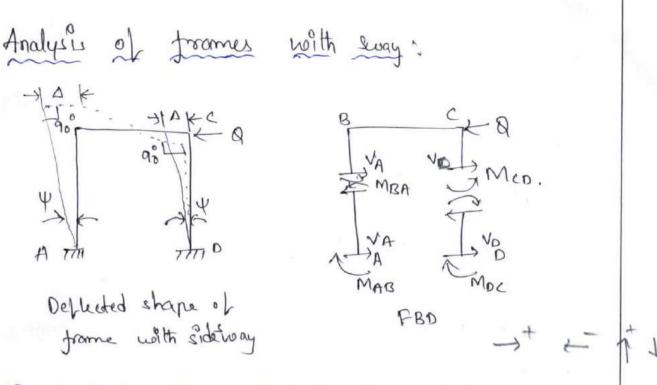
$$= 2U + \frac{2(T)}{L} (20_{R} + 0_{C})$$


$$= 2U + \frac{2(T)}{L} (20_{R} + 0_{C})$$

$$= -2U + \frac{2(T)}{L} (20_{C} + 0_{3})$$

$$M_{OC} = O + \frac{\partial e^2}{4} \left(200 + \partial c \right)$$
$$= 0.5 E O c - 0$$


3) Joint Conditions / Equilibrium Equations: Joint B: MBA+MBC=0 Joint C: MCB+MCD=0 -12:5+ 2E20B + 2U+E20B+05 E20C-A -2U+ E20C+0.5E20R+ E20C-B


26803 + 0.5620B = 24 36208 + 0.5620= - 11.5-AD (07) 0.5 E208 + 2E20c = 24 - 8 Midipy 4 by eq. (1) 4 (-12.5+ 24ID3 + 24 + E203+05E500)=0 4 [3 F 2 0 B + 0.5 FIOC-1+5] = 0 12620 + 2620 - 46=0 12620B+2620c =46 - (9) Egn- @ & Egn- @) 12620B + 265/0c =-46 0.5020B + 2/20c = 24 11.00 OBER =- 70 On OBET =- 70/11.95 =- 6.087 0B = 6:087 (10 Sub stidute QB in @ cq 0.5 f8 0B + 2 f2 Oc = 24 0.5 CR = 6.087 + 24ROC = 24 - 042 OCES = 24 - 042 OCES = 24 - 043 OCES = 24 - 043

-

B.M.D

The horizontal displacement of the top of both the columns one the same as D. This displacement induces a counter -clocknesse chord notation in both the columns of the frame z_i is given as $\psi = \frac{D}{h}$ (where h' is height of the column.

There are there independent displacements in the frame i.e, rotation at joint B (OB) & Joint C (OJ. & The churd rotation up . to There equilibrium oguations are need to also analyte The frame.

The two equations are due to proments actings@ joints & & C. The third equation which is based on equilibrium of forces need to develop. This eqn is called shear equation.

The equation is obtained by summing the forces acting on the free body of the girder in the horizontal direction.

for the given BC,

$$(+ 2 E_{R} = 0)$$
, $N_{A} = shear is low minimum of the column of$

Analyse the frame chown, by slope deflection method. E2 is constant for all members. Draw SFD & BMD. Sol: - The frame is fixed at A & D. 6 8A = 00 = 0. @ um The frame sways to left 6m 1 D The chord notation of AB % YAB = A : YCO = A 4A0 = 8 400 = A Tux 4AB = A 400 400 = 1.5 YAB. There are no fixed - end moments since no loads acting on any = S 4A3 members. 40=1.5 WAR 2. Slope deflection equations: MAB = 0+ 2EP + (20A+ 03- 3 4AB) = 0+ 2CT (20A+08-34AB) = 0.33 EI 08 - EI YAB - 0 $M_{BA} = O_{+} \frac{2ET}{6} \left(2O_{B} + O_{A} - 3\psi_{AB} \right)$ = 0.67 EI 08 - EI YAB -MBC = 0+2EE (208+04) = E20B + 0.5 E20c - B MCB = 0+ 249 (20c+ 02) = 620c + 0.5 650g - (4) McD = 0+ 200 (20c+ 00-2 40) YEDS 1.5x 4AS = 29Q - 1.5 (9 40 - 6)

0

0

0

۲

0

0

0

0

0

0

0

0

0

0

D

$$M_{DC} = \frac{2CP}{4} (200+0c-8 \ y_{c0}) - 6$$

$$= 0.5 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{c0} - 1.5 \ y_{00}$$

$$= 0.5 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{00} - 6$$

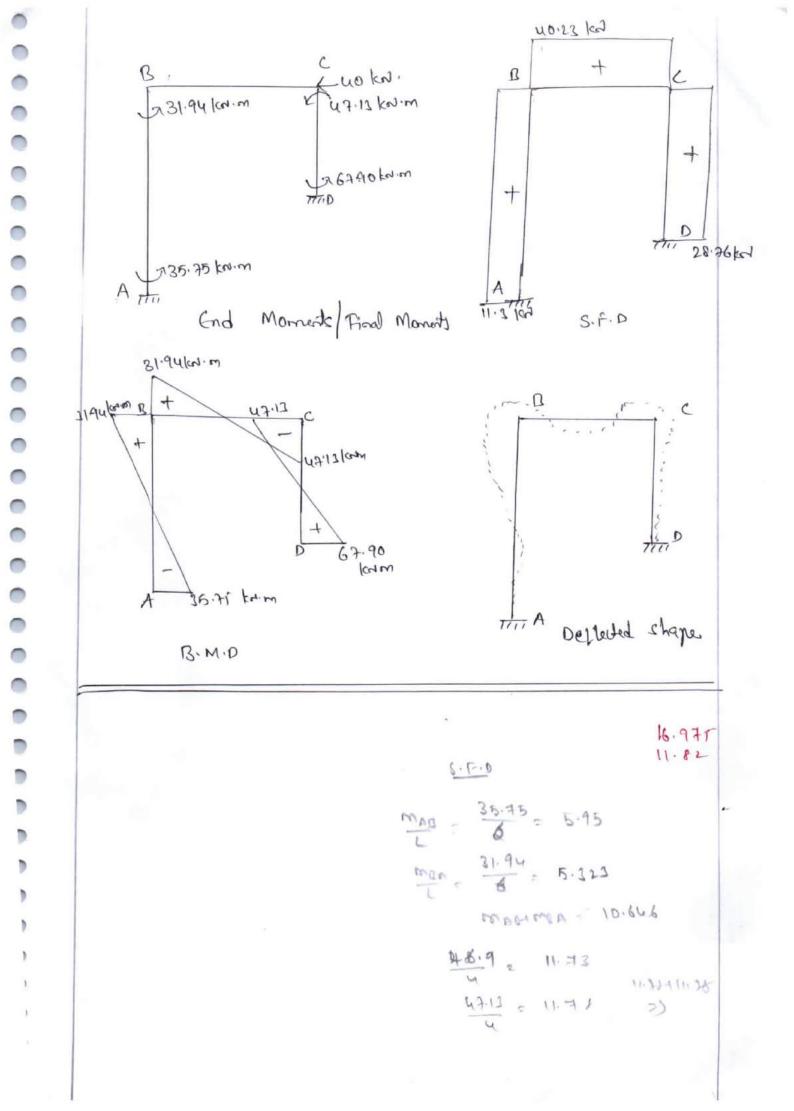
$$= 0.5 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{00} - 6$$

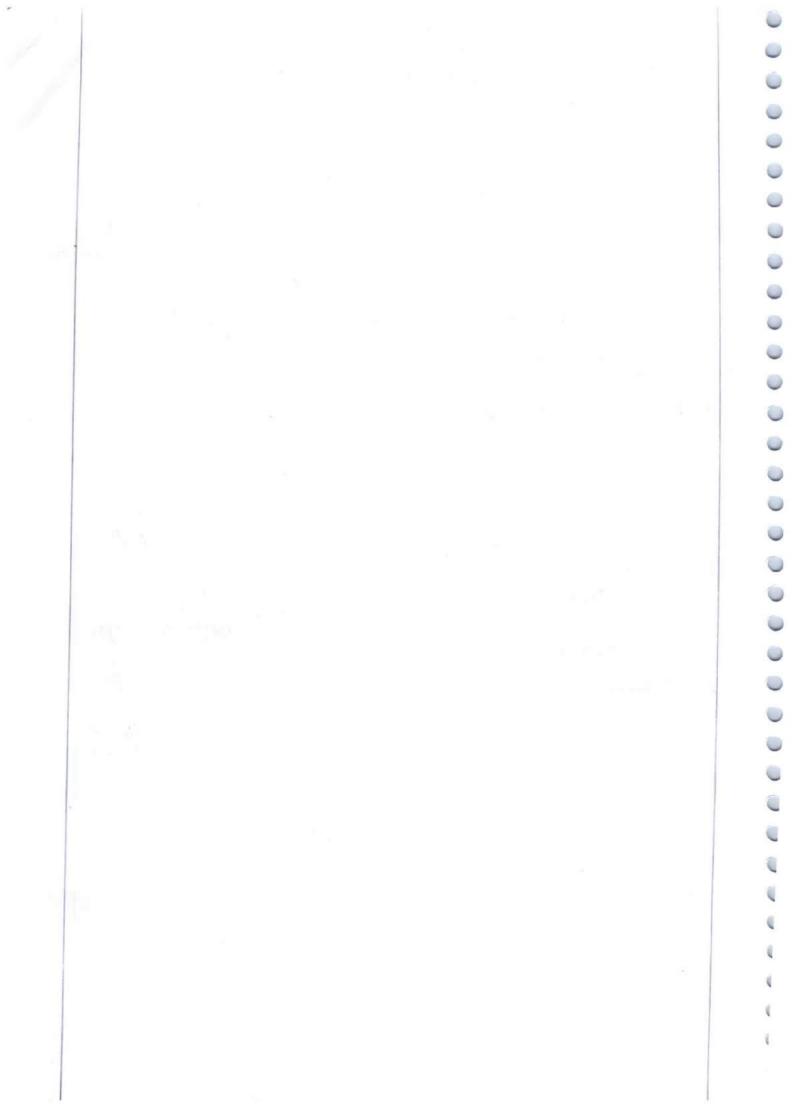
$$= 0.5 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{00} - 6$$

$$= 0.5 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{00} - 6$$

$$= 0.50 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ y_{00} - 6$$

$$= 0.50 \ \varepsilon \ 10c - 1.50 \ \varepsilon \ 10c - 2.50 \ \varepsilon \ 10c \ 10c - 2.50 \ \varepsilon \ 10c \$$


C


-3.2570
$$\partial_{B}$$
 + 0.8750 $c = 0 - 12$
put Q_{-10} in 10
0.167 GD_{B} + 0.245 GJ $\partial_{C} = 12056 GZ$ $(1.870_{B} + 0.50_{c}) = 40$
- 2.2680 $D_{B} = 0.2540 \partial_{C} = \frac{40}{C_{2}} - 10$
Multiplying $Q_{1}(B) \times 0.3540$,
-1.1620 B_{1} + 0.30975 $\partial_{C} = 0$ - 10
Multiplying $Q_{1} = 13$ by 0.6375 ,
-1.984 $50_{B} = 0.509750 \partial_{C} = \frac{35}{GZ} - 15$
adding $Q_{1}(J)$
-3.13750 $B_{B} = 3.567$
 $\boxed{\partial_{C} = -\frac{11.16}{C_{T}}} - 10$
Substituting (0) in (0)
-3.2576 $\times (\frac{1+1.16}{C_{T}}) + 0.8770 \partial_{C} = 0$
 $\boxed{\partial_{C} = -\frac{11.55}{C_{T}}} - (1)$
Substituting $O_{A} \gtrsim O_{C}$ in $Q_{2}(T)$
 $\Psi_{AB} = -1.676 GJ (-\frac{11.16}{C_{T}}) + 0.5 (-\frac{11.55}{C_{T}})$
 $\Psi_{AB} = -\frac{39.4122}{C_{T}}$

$$\begin{aligned} \psi_{10} &= 1.5 \ \psi_{AB} \\ &= 1.5_{X} \left[-\frac{39.4121}{49} \right] \\ \psi_{CD} &= -\frac{59.1182}{49} \\ \psi_{CD} &= -\frac{59.118}{49} \\ \psi_{CD} &= -\frac{59.118}{49} \\ \psi_{CD} &= -\frac{59.118}{49} \\ \psi_{CD} &= -\frac{11.16}{49} \\$$

Q

•

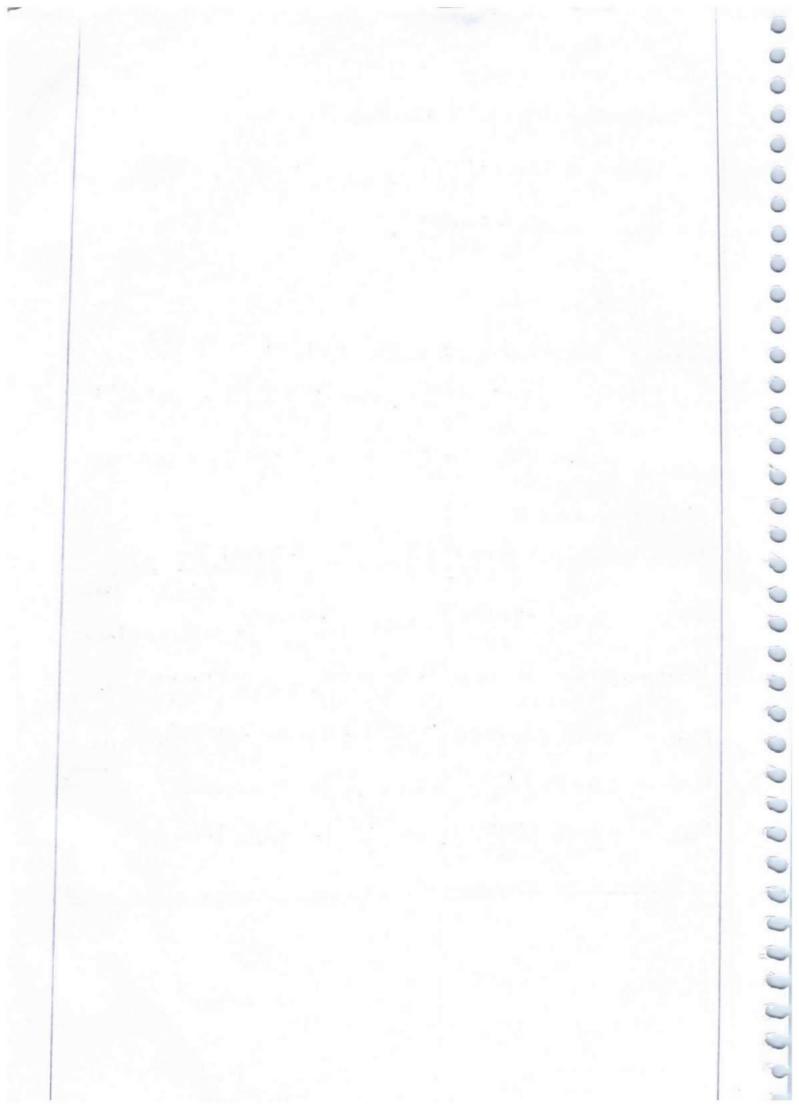
Slope - Deflection - Mellod for Sway James:
Bb Analyse like frame by SDM. 62 is constant for all like member.
Set A & D are fixed: On = Op = 0

$$PAB = \frac{5}{4}$$
, $Pco = \frac{A}{5}$. $Pco = \frac{A}{$

-

Join B: E208- 1.562 YAB+ 28.65+ 0.86208 + 0.4620=0 1.80B + 0.40C - 1.5 YAB = -28,65 - 3 Join C: -13.02 + 0.8CIOC + 0.4EIOR + 0.676JOC-0.67 CS YAGO $D \cdot U \partial_{B} + V U + \partial_{C} - 0.6 + \Psi_{AB} = \frac{13.02}{4P} = 3$ shear equation: &- [MAB+MBA] - [McD+MDC] = 0 0 - (0.5 GIOB-1.5 CI YAB+ CIOB-1.5 (I YAD) -(0.66IOC -0.67 EIYAB + 0.13 EPOC-0.67 EEYAB) = 0 9 -0.375 6200-0.167 6300+0.1720c =0 from eq- 9', YAB = 0.385 OB + 0.192 Oc - 10 put eq. @ in eq. @ $1.8 \in 10_{R} + 0.40c - 1.5 \in 1(0.3850_{R} + 0.120c) = -28.65$ $1.22250_{\rm B} + 0.1020_{\rm C} = -\frac{28.65}{47}$ put eq-10 in eq-1 0.40B+ 1470c - 0.67 (0.385 0B+ 0.73 0c)= 13.02 0.14205 QB+ 1.3548 Oc = 13.02 - (2) Muttiplying eq. (1) by 0.14205, 0.193703 + 0.02000= 407 Multiplying eq. @ by 1.2225, 0.77373703 + 1.6560c = 15.917 (3) subsaching 62-10 from 62-10, $-1.6360c = -\frac{19983}{CI}; \quad 0 c = \frac{12.213}{CI}$ 15 substituting 62 (13) indo 69 - (1), 1,22250 + 0,142 (12.21A) = -28-60

$$O_{B} = -\frac{24.855}{E_{T}} - 10$$
Substituting $e_{q1} - 15 = (16)$ into $e_{q} - 10$


$$V_{AB} = 0.385 \left(-\frac{24.851}{E_{T}} + 0.132 \left(\frac{12.212}{E_{T}} \right) = -\frac{7.468}{E_{T}} - 12$$

$$V_{CD} = 0.62 \left(-\frac{7.468}{E_{T}} \right) = -\frac{5}{E_{T}}$$

$$\begin{aligned} f(y) &= -\frac{5}{6\pi} \\ \text{Check} : \text{Substiduting } for (15) - (14) & \text{into } (5) \\ \text{(-14)} &= 0.4 \left(-\frac{24.855}{6\pi} + 1.49 \right) \left[\frac{12.217}{6\pi} - 0.60 \right] \left(-\frac{7.467}{6\pi} \right) \\ &= -\frac{9.942}{6\pi} + \frac{1.97959}{6\pi} + \frac{5}{6\pi} = \frac{13.02}{6\pi} = 12.44 = 0 \\ \text{K}_{1.} \end{aligned}$$

$$\begin{aligned} \text{Cod moments } & \text{MBB} = 0.5 \\ \text{Cod} \quad \text{Moments } & \text{MBB} = 0.5 \\ \text{Cod} \quad \frac{-24.857}{6\pi} - 1.5 \\ \text{Cod} \quad \frac{-7.467}{6\pi} = -13.653 \\ \text{MBB} = 0.5 \\ \text{Cod} \quad \frac{-24.857}{6\pi} - 1.5 \\ \text{Cod} \quad \frac{-7.467}{6\pi} = -13.653 \\ \text{KD} &= -13.653 \\ \text{MBB} = 0.5 \\ \text{Cod} \quad \frac{-24.857}{6\pi} - 1.5 \\ \text{Cod} \quad \frac{-24.857}{6\pi} = -13.653 \\ \text{KD} &= -13.653 \\ \text{KD} &= -13.655 \\ \text{KD} &= -13$$

 $M(R = -13.02 + 0.80 \in \mathbb{P} \left[\frac{12.217}{62} \right] + 0.4 \in \mathbb{P} \left[\frac{-24.851}{52} \right] = -12.148$ $M(Q = 0.67 \in \mathbb{P} \left[\frac{12.217}{61} \right] - 61 \left[\frac{-5}{62} \right] = 13.185 \text{ lever m}$ $M_{OC} = 6.13 \in \mathbb{P} \left[\frac{12.217}{62} \right] - 61 \left[\frac{-6}{52} \right] = 9.052 \text{ lever m}.$

Two HINGED ARCHES

Introduction :

Arch is subjected to three restaining forces, i) thrust, ii) share force iii) bending moment.

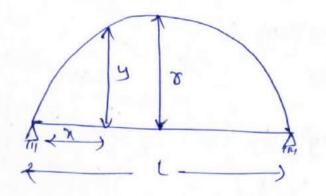
Arches causes the transverse loading which are frequently rectical. Since the transverse loading at any section morroral to the anis of the girder is at an angle to the normal face.

Arches are of two types & 1) Two hinged anches 2) Three hinged anches.

Two-hinged onches have degree of indeterminary one. The clas of the anches may be of ditherent shapes of which the commonly used ones one. Olar & paeabolic.

The analysis is aesthicked to christian & paeabolic anches only.

Arch is a cuered member subjected to external loads & support


Types of archer; i) 3-hinged onches

11) Two - hinged anches

Classification of arches based on shaped g

i) Palabolic arch ii) (irway arch iii) Segmental arch

iv) semi circular anch

L- span Y- central noire Y- anched end at any s/n N- horizontal distance from support to section.

A Two hinged anch is statisticly indeterminate to single degree,
since this are jour seation components to be determined while
the no. of equations from statical equilibrium is only there.
Considering 'H' to be undertaint searchion, it can be jourd
out by the use of castigliands theorem.
assuming the horizontal span; withouged,

$$\frac{\partial U}{\partial H} = 0$$

where U- is the stated statistication to the anch.
Strain- energy stored due to the shear usit be
considered negligible in componision to that due to be addig.
 $U = \int \frac{M^2 ds}{dt_1}$
St is statically Indeterminate
the structure.
 $M_{M} = V_{M} \cdot X - H.y$
 $M_{M} = V_{M} \cdot X$
 $M_{M} = M_{M} \cdot M_{M}$
 $= \int \frac{(M - Hy)^{-1}}{dt_2} ds$
 $= U = \int \frac{M^2 ds}{dt_2}$
 $M = I + Hy$
 $\frac{\partial U}{\partial H} = 0$; $U = \int \frac{M^2 ds}{dt_2}$
 $\int (M - Hy)^{-1} ds$
 $\int (M - Hy)^$

$$U = \int \frac{M^{2}}{deT} dS$$

$$\frac{\partial U}{\partial H} = \int \frac{M}{ReF} \cdot \frac{\partial M}{\partial H} \cdot dS$$

$$= \int \frac{M}{ET} \cdot \frac{\partial M}{\partial H} (ds. Sec \theta) = 0$$

$$Constraint x = x (d) a diatores of x from x)$$

$$\frac{\partial U}{\partial H} = \int \frac{M_{1-Y}}{ET} \cdot \frac{\partial M_{X-Y}}{\partial H} \cdot dS$$

$$\frac{\partial U}{\partial H} = \int \frac{M_{1-Y}}{ET} \cdot \frac{\partial M_{X-Y}}{\partial H} \cdot dS$$

$$\frac{M_{1-Y}}{\partial H} = 0 - y$$

$$\frac{\partial M_{X-Y}}{\partial H} = 0 - y$$

$$\frac{\partial M_{Y}}{\partial H} = 0 - y$$

$$\frac{\partial$$

Hy = M

$$\begin{array}{c}
H = \frac{M}{4} \\
\hline
H = \frac{M}{4} \\
\hline
H = \frac{M}{4} \\
\hline
H = \frac{M}{42} \\
\hline
H = \frac{M_{4}}{42} \\
\hline
H = \frac{M_{4}}$$

VA+ VB = 12×40 + 200 = 680 kav

Emp=0

•

•

•

•

Sol -

18x40 x 40 + 200x20 - 40 VB = 0

HA-

-Hn

VB

+20m

uom

$$V_{B} = 3u0 \text{ kN}$$

$$V_{A} = 3u0 \text{ kN}$$

$$H = 4H + H_{L}$$

$$= \frac{WJ^{2}}{8\pi} + \frac{3f}{188} \cdot \frac{WL}{7}$$

$$H = \frac{127u0^{2}}{6\pi8} + \frac{3f\pi 2007u0}{188\pi8}$$

$$\frac{1}{18} + \frac{145.3 \text{ kN}}{128\pi8}$$

$$\frac{1}{18} + \frac{145.3 \text{ kN}}{128\pi8}$$

$$B \cdot m @ A = 0$$

$$B \cdot m @ B = 0$$

$$B \cdot m @ B = 0$$

$$B \cdot m @ C = V_{B} \times 20 - H \times 8$$

$$= 28376$$

$$M_{X} = V_{A} \cdot 7 - H \cdot y - 12 \cdot 7 \cdot \frac{y}{2} \cdot \frac{1}{2}$$

$$= 3u0 \cdot 4 - 045.2 \times \frac{4x}{20} \left[u_{0} - 2\pi \right] - 6\pi^{2}$$

$$\frac{dM_{N}}{dx} = 3u0 - 9 \cdot 9 \left[u_{0} - 2\pi \right] - 12\pi = 0$$

$$= 320 - 396 + 19 \cdot 8\pi + 12\pi = 0$$

$$H \cdot 8\pi = 56$$

$$\pi = \frac{56}{3\cdot 8} = 7 \cdot 13m$$

$$\frac{x = 3 \cdot 13m}{x = 3u0 \times 3 \cdot 13} - 9 \cdot 9 \left[u_{0} \times 7 \cdot 17 - 7 \cdot 13^{2} \right] - 6\pi^{3} h^{2}$$

$$Max \quad B \cdot M = 3u0 \times 3 \cdot 13 - 9 \cdot 9 \left[u_{0} \times 7 \cdot 17 - 7 \cdot 13^{2} \right] - 6\pi^{3} h^{3}$$

$$Max \quad B \cdot M = 3u0 \times 3 \cdot 13 - 9 \cdot 9 \left[u_{0} \times 7 \cdot 17 - 7 \cdot 13^{2} \right] - 6\pi^{3} h^{3}$$

$$Max \quad B \cdot M = 3u0 \times 3 \cdot 13 - 9 \cdot 9 \left[u_{0} \times 7 \cdot 17 - 7 \cdot 13^{2} \right] - 6\pi^{3} h^{3}$$

R.s = H.Sin 0 - Vn. 600

$$\begin{aligned} & \text{Alif} = H (\text{os } 0 \neq \text{Vr. } \text{lind} \Rightarrow \underbrace{\text{uppicture}}_{\text{line}} \left(\text{uppice} 0 \right) \\ & \text{V_x} = (u_{95}, s) \\ & \text{y} = \underbrace{\text{uppice}}_{u_{95}} \left(\text{uppice} - s \right) \\ & \text{Tand } 0 = 0 \\ & \text{O} = 4 \text{cm}^2 0 \\ & \text{O} = 0 \end{aligned}$$

$$\begin{aligned} & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{O} = 0 \end{aligned}$$

$$\begin{aligned} & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{O} = 0 \end{aligned}$$

$$\begin{aligned} & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Brissed} \text{Pressure} \left(\text{uppice} - s \right) \\ & \text{Calculate radial also as $g \text{ alternal linest} \text{ of a section of low } \\ & \text{Form latternal lines calculate radial Brissed } \\ & \text{Calculate radial also as $g \text{ alternal linest} \text{ of a section of low } \\ & \text{Form latternal lines + 100 +$$$$

$$\begin{split} H_{1} &= \frac{5}{8} \times \frac{100}{710} \left[1 - a \right] \left[1^{2} + a \left[- a^{2} \right] \right] \\ &= \frac{5}{8} \times \frac{100 \times 10}{7.5 \times 30^{2}} \left[30 - 10 \right] \left[3b + 10 \times 10 - 1b \right] \\ &= 63 - 90217 \\ \hline \\ \hline \\ H_{1} &= \frac{355 \times 100}{128 \times 7.5} = \frac{25 \times 120 \times 20}{128 \times 7.5} = 93.37 \\ \hline \\ \hline \\ H_{2} &= \frac{355 \times 100}{7.5 \times 20^{2}} \left(10 - 20 \right) \left(2b^{2} + 20 \times 20 - 2b \right) \\ \hline \\ \hline \\ H_{3} &= \frac{5}{7} \times \frac{150 \times 20}{7.5 \times 20^{2}} \left(10 - 20 \right) \left(2b^{2} + 20 \times 20 - 2b \right) \\ \hline \\ \hline \\ H_{3} &= 100 \times 10^{2} \text{ M} \\ \hline \\ H &= H_{1} + H_{2} + H_{2} = 63.91 + 93.97 + 101.87 \\ \hline \\ \hline \\ H &= 263 \cdot 50 \text{ KN} \\ \hline \\ M_{0} &= N_{0} \times 10^{2} \text{ M} \\ N_{0} &= \sqrt{6} \times 10^{2} - 100 \times 5 \\ &= 176.63 \times 10^{2} - 262.5 \times 6.67 \\ &= 91.55 \text{ KN} \\ \hline \\ M_{0} &= \sqrt{6} \times 10^{2} - 100 \times 5 \\ &= 176.63 \times 10^{2} - 262.5 \times 6.67 \\ &= 91.55 \text{ KN} \\ \hline \\ M_{0} &= \sqrt{6} \times 10^{2} - 14.97 \\ \hline \\ M_{0} &= \sqrt{6} \times 10^{2} - 14.97 \\ \hline \\ M_{0} &= \sqrt{6} \times 10^{2} - 14.97 \\ \hline \\ M_{0} &= \sqrt{6} \times 10^{2} - 100 \times 5 \\ &= 193.5 \times 10^{2} - 100 \times 5 \\ &= 193.5 \times 10^{2} - 262.5 \times 6.67 \\ &= 0.00 \times 10^{2} - 100^{2} \\ \hline \\ M_{0} &= \frac{10}{12} \left[1x - x^{2} \right] \\ \hline \\ V_{0} &= \frac{10}{12} \left[1x - x^{2} \right] \\ \hline \\ V_{0} &= \frac{10}{12} \left[1x - x^{2} \right] \\ \hline \\ V_{0} &= \frac{10}{12} \left[x - x^{2} \right] \\ \hline \\ \end{array}$$

J

under

.

•

•

•

.

•

.0

.0

.0

.0

,0

0.0

P

P

Two hinged arches:
De is a dobiedly Brobeteinfinde
structure:

$$M_{n} = V_{n} \cdot n + Hy$$

$$M_{n} = V_{n} \cdot n$$

$$M_{n} = M_{n} \cdot Hy$$

$$\frac{\partial U}{\partial H} = 0$$

$$U = \int \frac{m^{2} ds}{\partial e^{2}} = \int \frac{(m - Hy)^{2}}{\partial e^{2}} ds = 0$$

$$U = \int \frac{m^{2} ds}{\partial e^{2}} = \int \frac{(m - Hy)^{2}}{\partial e^{2}} ds = 0$$

$$\int (m - Hy)(-y) ds = 0$$

$$\int (my + Hy^{2}) ds = 0$$

$$\int Hy^{2} ds = \int my ds$$

$$H = \int y^{2} ds$$

$$H = \int y^{2} ds$$

$$H = \int y^{2} ds$$

$$H = \int my ds$$

$$H =$$

4.13

Paeabolic anches:

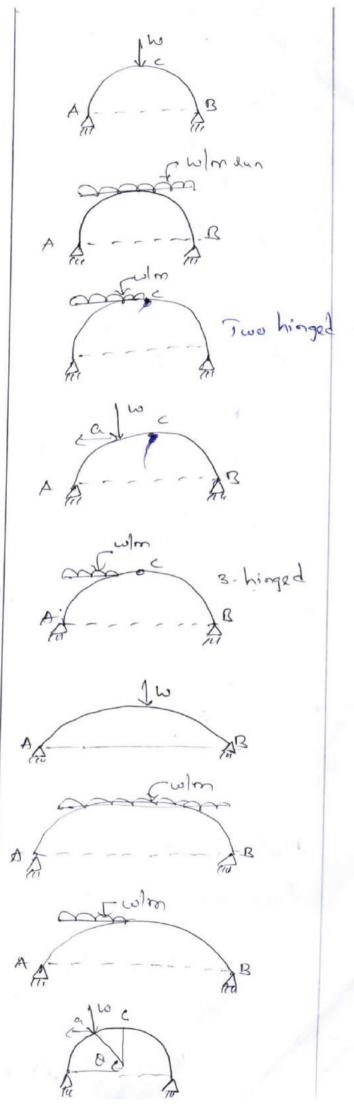
$$H = \frac{2\pi}{123} \cdot \frac{\omega I}{h}$$

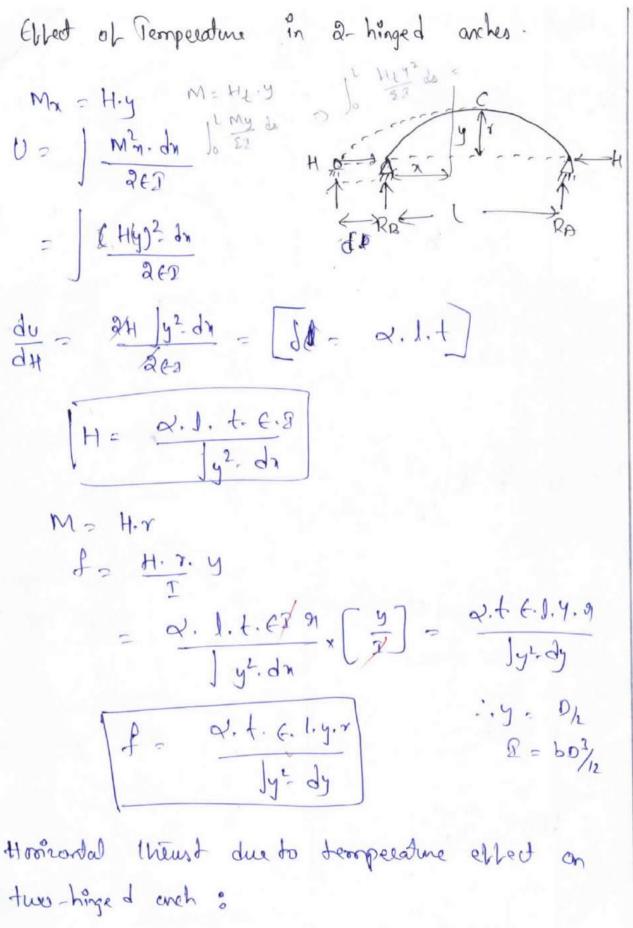
$$H = \frac{\omega I^{2}}{8 r conh}$$

$$H = \frac{\omega L^{2}}{16 h}$$

$$H = \frac{\omega}{16 h} (1-a)$$

$$H = \frac{\omega a^{2}}{16 h} (5I^{2} - 5Ia^{2} + 2a^{2})$$


$$H = \frac{\omega a^{2}}{16 h} [5I^{2} - 5Ia^{2} + 2a^{2}]$$
Secondorradae anches:


$$H = \frac{\omega}{h}$$

$$H = \frac{2 + \omega R}{5\pi}$$

$$H = \frac{2 + \omega R}{5\pi}$$

$$H = \frac{\omega}{6\pi}, \text{ sfor }^{2}0.$$

 $H_{1} = \frac{EIQ.F.J}{Jy^{2}.ds}$ $Y = \frac{4h}{12} (Jx.x^{2}) = \frac{8}{15} h^{2} (m \frac{d}{15} x^{2}).$

Ind: A two-hinged parabolic anch of span 30m & Central alise Gm, subjected to change in temperature of 30°C. Cal. the bending steers developed in a depth of 0.70 m from given data. Pake &= 12.156 per degree certigrade, E= 2x10mm b=0.3m. Sol- r=h= Gm, span l= 30m, t= 30°c, q= 12.0×10°c D=0.7m, E=2×10 SN/mm, b= 0.2m=300mm d=n $H = \frac{q^2 \cdot 1 \cdot 4 \cdot \epsilon \cdot 2}{1 y^2 \cdot dx}$ 9= <u>b</u> <u>b</u>² = 0.3×0.73 $y = \frac{4r}{J^2} \left[4r - r^2 \right]$ > 3000 2002 -2 = 8.575×10000 $y = \frac{U \times 6}{30^{1}} \left[30 - n^{2} \right] \quad y = \frac{f \times 2}{15}$ Y= D/2 = 700 $\int y^2 dx = \int \left(\frac{2y}{900}\right)^2 \times \left(30x - x^2\right)^2 dx$ Y = 390mm $= \left(\frac{2u}{400}\right)^2 \int_0^{10} (900n^2 + x^4 - 60x^3) dx$ = 7.1x10 $\left[\frac{910 x^2}{3} + \frac{x^2}{5} - \frac{60 x^2}{4}\right]_0^{30}$ = 7.1 +10 [900× 30] + 30 - 60 × 70] y222 575.1 $\therefore f = \underbrace{M}_{y} y = H_{r} \begin{bmatrix} y \\ x \end{bmatrix} = \frac{1}{2} \underbrace{J_{y}}_{y} \underbrace{J_{y}}_{$ f= q.t.E.l.r 1.22

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

$$\begin{aligned}
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{6} \times 2 \times 10^{6} \times 20 \times 10^{2} \times 6 \times 10^{2}}{52.6} \times 310 \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-1}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-1}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-1}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-1}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-1}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3} \times 10^{-3}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{6} \times 10^{-3}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 10^{10}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 10^{-3}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 10^{-3}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 10^{-3}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 10^{10}}{100^{10}} \\
\frac{1}{4} = \frac{12 \times 10^{10} \times 1$$

~

dH 2 EIS S- yielding in support Net hon zontal literest : Homortal theuse due to loads - Homortal theuse due to yielding: N.H.T = H- dH Homondal thrust due to us chartening: H = J Myds/EP J yrds + J. J E2 + Ame Mo: A 2-hinged palabolic each of span 20 on of lise on causes a UPL of 20 kn/m. Calculate the horizontal theust it a supports yields talkeally with supert to other support by 0.02m. What will be the homental thrust? 201: 2 = 1.2x107 0000, E= 2x107 N/mm [Annu] W= 20km [Jo kay 91 = 8m Jam Jok of 1 = 20m 8 = 0'0200 = 0'002x10 m H - Ag - -2mp=0 ha+2a= 20120 = woo ka RA XO + RE720 - 207 20 + 20 = 0 RB= 200 low Ra = 200 km

Honorontal theust due to spielding of supports:

$$H = \frac{UV^{2}}{Ph}$$

$$= \frac{20 \times 20}{8 \times 8} = 125 \text{ Im}$$

$$\frac{H = 127 \text{ Km}}{H = 127 \text{ Km}}$$

$$\frac{H = 127 \text{ Km}}{H = 127 \text{ Km}}$$

$$\frac{H = 127 \text{ Km}}{\int_{0}^{1} \frac{1}{9}^{2} ds}$$

$$\frac{H = \frac{291}{\int_{0}^{1} \frac{1}{9}^{2} ds}{\int_{0}^{1} \frac{1}{9}^{2} ds} = 0.02 \times 10^{2}$$

$$= \frac{2 \times 10^{5} \text{ s} 1.3 \times 10^{5} \times 0.02 \times 10^{2}}{\int_{0}^{1} \frac{1}{9}^{2} ds} = \frac{8}{15} \times (110^{3} \times 20 \times 10^{3})$$

$$= \frac{2 \times 10^{5} \text{ s} 1.3 \times 10^{5} \times 0.02 \times 10^{3}}{6 \text{ s} 26 \times 10^{3}} = \frac{8}{15} \times (110^{3} \times 20 \times 10^{3})$$

$$= \frac{2 \times 10^{5} \text{ s} 1.3 \times 10^{5} \times 0.02 \times 10^{3}}{6 \text{ s} 26 \times 10^{3}} = \frac{8}{15} \times (110^{3} \times 20 \times 10^{3})$$

$$= \frac{6 \cdot 826 \times 10^{3} \text{ mm}}{6 \cdot 826 \times 10^{3} \text{ mm}}$$

$$= 0.099 \text{ Km}$$

$$= 0.099 \text{ Km}$$

$$= 0.099 \text{ Km}$$

$$= 0.099 \text{ Km}$$

$$= 0.124900 \text{ mm} \text{ km} \text{ km}$$

$$= 0.124000 \text{ km} \text$$

VA = 480-240 VA= 200 KN. Horizontal theust H= WLZ = 19x 402 = 300 kN Cal. of B.M: B.M @ A = 0 BIM @ B=0 B.m @ C = Vgx20- Hxr = 240×20 - 300×.8 = 2400 KN.m B.m @ 2-2 = Ma = VAX2 - WX N. M - Hxy = 240×7 - 12× 7- 300× 4 y = ur [12-2] $M_{\chi} = 2uo\chi - \frac{12\pi}{2} - 300 \left[\frac{u\gamma}{u\gamma} (uo\chi - \chi^2) \right]$ = 200x - 6x2 - 300 [32 [U0x-x2]] = 240m - 6m - 300 [0.8x - 0.02x2] $= 210x - 6x^{2} - (240x - 6x^{2})$ = 240 - 12x = 04 mm Min ~ 2402 - 2002 -12n2 = din = 240 + 4320x + 4447 = 0 240+(3×14407) + 1447 = 0 2 = 4464 = 18-6 x =186m N= tom = 0 . Man B. M & VARR - WARRY - Hay 2400-111 12- 12- 12.60 14.6/2 - 2000 400 8 (40018-6-18-6)

0 = 4464 - 2075. 26 - 7.96 B.M = Ma = 2380.28 kn.m At a distance of 20m from the left end R.S= H Sind- Vn CosO. tan 0 = dy $\tan \theta = \frac{d}{dn} \left[\frac{\ln n}{n^2} \left(\ln n \right) \right]$ 0 = tan' (4r (1-2n)) = tan [Ux 8 [u0-2×18,96] = tañ' [toba) 0 = 58° 59' / 58-995 0 Vn=VA R.S = H Sin O - VA LOS O = 300x Sin(0) - 240 (Los 0) - - 240 km N-T = H COI O + V SinD = 300x cos co) + 240 (Sino) = 300 ka

En:- A Two-hinged parabolic anch of span 30m & orse 6m called two point loads, each GO KN ading at 7.5m & 15m 0 from the left end, sesp. The moment of In eetic valies, as the 0 second of slope. Determine the honizontal theuse & max. positive 0 le regative moments in the cuch mit. 60 km 160 km 0 0 Sol-0 600 08 Hg = H H = HA - TK - Sm 0 0 ۲ (15m) (15m. • ۲ VA+ VB = 60 + 60 = 120 KN 0 2mA =0 Ó 0 VB×30 - 60× 15- 60× 7.5=0 0 NR = 1350 = 45 EN 0 0 VR = 45 0 NA = 120 - 41 = 75 KN 0 $H_{1} = \frac{5}{8} \times \frac{W}{r^{3}} \alpha \cdot \left[1 - \alpha\right] \left[1^{2} + 1\alpha - \alpha^{2}\right]$ 0 0 $=\frac{5}{8} \times \left(\frac{60}{6 \times 10}\right)^{\times} 7.5 \left[20 - 7.5\right] \left[30^{2} + 20 \times 7.5 - 7.5^{2}\right]$ 0 0 = 1285 (1088 75) 198.75 0 = 48.71 KN $H_2 = \frac{25}{128} \frac{WL}{r} = \frac{27}{128} \times \frac{60 \times 10}{6}$ = 58.59 KN H2 H1+H2 => 48.75+58.59 = 100.34 KN

0

0

Max B.m (tre) =
$$M_{1} = V_{12} + \frac{1}{2} - \frac{6}{20^{2}} + \frac{1}{2} = \frac{1}{2} \sqrt{3} + \frac{1}{2} + \frac{1}{2} \sqrt{3} + \frac{1}{2} \sqrt{3} + \frac{1}{2} + \frac{1}{2} \sqrt{3} + \frac$$

-

•

.........

•

•

B.M (a)
$$A = 0$$

 $B = 0$
 $x = M_{\pi} = V_{A} \times 2 - \omega_{0} \times x \times \frac{\pi}{2} - H \times y$
 $= 465 \times 2 - \frac{30\pi^{2}}{2} - 560.669 \times \frac{U \times 6}{U_{0}^{2} \times (100.37)}$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 465\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 15\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 4.05\pi - 12\pi^{2} - 8.01 (40\pi - \pi^{2})$
 $= 12\pi^{2} - 12\pi^{2}$

$$\frac{1266(1) - 65111 = 0}{1266(1) - 65911 = 0}$$

$$\frac{1266(9.757) - 65911 = 0}{\frac{12514.3}{5} - 627.36}$$

$$\frac{1247.42 - 627.36}{1247.42 - 627.387} = 0$$

$$\frac{12}{3}$$

Max -ve B.m =

$$M_{n} = \sqrt{8} \times 2 - 120 (2 - 5) - 4y$$

$$= 255x - 120 (2 - 5) - 560.669 \times y$$

$$= 355x - 120x - 600 - 560.669 \left[\frac{4y6}{40^{2}} + \frac{10x - 3}{40^{2}} \right]$$

$$= 255x - 120x - 600 - 8.41 [40x - 3^{2}]$$

$$= 600 - 201.4x + 8.413^{2}$$

$$\frac{1}{3} + \frac{1}{3} + \frac{1$$

 $0 = -201.4m + 8.41m^2$ $R = \frac{201.6}{16.82} = 17.934m_{\mu}$

 $M_{min} = 600 - 201.0x + 8.01x^{-1}$ = 600 - 201.0 (11.970) + 8.01 (11.990)² = - 605.766 KN.m

5/20 BD

$$M_{x} = 2557x - 560.669 \text{ y}$$

$$= 2557x - 8.01 (40x - x^{2})$$

$$= -8.1.00 \times + 8.01 \times 2$$

$$M = -8.1.0 (4.839 \text{ m})$$

$$M = -8.1.0 (4.839) + 8.01 (4.829)^{2}$$

$$= -196.969 \text{ km} \text{ m}$$

$$+ \text{Ve man} = 627.388 \text{ kolor} \text{ d} 9.7557 \text{ m}$$

$$\text{man} - \text{Ve} = -605.766 \text{ kn} \text{ m} \text{ d} 11.970 \text{ m}.$$

$$Ad 10 \text{ m} \text{ from the nybt support}:$$

$$dan 0 = \frac{dy}{dx} = \frac{d}{dx} \left[\frac{4}{12} (1-2x) \right]$$

$$= \frac{4x}{1^{2}} (1-2x)$$

$$= \frac{4x(6)}{40^{2}} (40-2x9.7557)$$

$$dan 0 = 16.694^{6}$$

$$N = V \sin 0 + H \cos 0 = (8.85 + 120) \sin 16.6994$$

$$= 560.669x \cos 7.66.699$$

N.T =) 575.815 KN

R.S =) V Cos 0 - H sin Q =) (255-120) × Cos 16.699 - 560.699 - Sin 16.699° =) - 31.800 KIV

Rib Shortoning & yielding of supports:

A two hinged paeabolic of arch of spay 10m caecies a udl of 12 kn/m for 5m from the left end & a point of 20 km at a distance of 2m from the oright support- 2t has an elastic support which yields by 0.02m, The central vise of arch is 5m Take E = 200 km/mm 2 = 5x109 m & area Am = 10000 mm, x = 10x10 /c. Calculate the horizontal themed also calculate the H due to eib shortening. J=0.02m 8= 5m E= 200 len onm 500 1 = 5×10 mm E3m -1 2m Ai 8= 0.02 Am = 10000 mm2 400 ~= 10×106 0/c Rolva Palvo HEO RA+ RB = (12×5) + 20 = 80 KN. EMA=0 VB+L- 20×8-12×5×5=0 VB = 310 VB = 31 KN VA = 80-31 = 49 km

Soli-

$$H = \frac{W_{1}^{1}}{16\tau} + \frac{5}{5} \cdot \frac{W_{0}}{5(t^{2}} \left[1-a \right] \left[t^{2} + La - a^{2} \right]$$

$$= \frac{12 \times b^{2}}{16 \times 5} + \frac{5}{6} \times \frac{2 \cos b^{2}}{5 \times 10^{5}} \left(10 - a \right) \left(10^{2} + 10 \times 4 - a^{2} \right)$$

$$= 15 + (D \cdot 02) \times 114$$

$$H = 13, 22 \times a = \frac{1}{3}, 13, 22 \times 10^{3} \text{ N}$$

$$Hirroordol Intust due to loading = H = 13, 32$$

$$= 152, 22 \times a = \frac{1}{3}, 13, 22 \times 10^{3} \text{ N}$$

$$Hirroordol Intust due to loading = H = 12, 32$$

$$= 123, 32 \times a$$

$$= 150, 001 \times 10^{5} \text{ (s)} \times 0.02 \times 10^{2} = 150, 0 \times 10^{6} \text{ (s)} \times 50^{2} \times 10^{2} \text{ (s)} \times 50^{2} \text{ (s)} \times 50^{2} \times 10^{2} \text{ (s)} \times 50^{2} \text{ (s)} \times 50^{2} \text{ (s)} \times 10^{2} \text{ (s)} \times 50^{2} \text{ (s)} \times 10^{2} \text{ (s)} \times 10^{2$$

-

0

0

0

0

0

•

•

•

•

•

0

0

۲

•

•

0

0

•

•

0

•

0

•

•

•

0

•

0

•

•

0

0

0

0

•

0= 49 -12x -17.32 [2-0.4x] 0 =) 49-12N -34.64 + 6.928x y= 4× 8 [10×2.86-2.08] 0= 14.36 - 5.0724 y = 6.535m N = 2.86 m Ma = 491 - 12.22 (x 6.535 =) 49x2.86 - 6x2.86 - 17.32x6.135 (or) Hay =) 17.32×6.635-113.2 Mr =) 22.12/2011.m H: JMyds/22 JMyds/22 JMyds/22 PEllet of Temperature on Two-hinged Archy let Hit be the horizontal theust induced due to temper--ature use by t. The increase in horizontal span of onch = L.d.t where d= coefficient of themal expansion. The B.M @" any element at a height y is M = Ht.y. Total increau in even due to bending of cueved 14 bios = j M² M dr o j M² m dh Q tI o j Q tI $H = \int_{0}^{L} \frac{My}{\xi_{2}} ds \quad \text{ar} \quad \int_{0}^{L} \frac{M_{x}^{2} dh}{d\xi_{2}} \qquad \int_{0}^{L} \frac{M_{y}^{2} dh}{d\xi_{2}} = \frac{2\eta_{y}^{2} y^{2} dh}{\xi_{2}}$ H= Ldf $l: a:t = \int_{0}^{t} \frac{m_{y}}{\Sigma_{2}} ds$ or $\int_{0}^{t} \frac{(H_{t} y)^{2}}{2E\Sigma} dt = lat$ & H4 15- d3 - L 2+ Str

Hy Jyds = EI L. d. E $H_{t} = \frac{\epsilon_{2} \cdot l \cdot \omega \cdot f_{t}}{\int g^{2} d_{3}}.$

Rb. A two hinged paeabolic arch of span your & use smis subjected to a temperature rise of 22 k. Calculate the maximum bending stren at the ceason due to the temperat -une vier if & = 11x10 per 1 k & E= 2.1x10 N/mm. The sib section is exponential & 1 m deep.

Solf- The eqn of paeabola = y= ur ((x-x))

$$y = \frac{u \times F}{uo^{2}} \left[uo \times n - n^{2} \right] = \frac{n}{50} \left(uo - n \right)$$

$$\int_{0}^{1} y^{2} ds = \int_{0}^{1} \left[\frac{uo}{50} - n^{2} \right] dx \left[\frac{n}{50} \left(uo - n \right) \right] dx$$

$$= \int_{0}^{1} \frac{n^{2}}{2500} \left[uo - n \right]^{2} dx$$

ò

$$\int y^{2} dx = \frac{\delta}{5} \int 1 = \int_{0}^{40} \frac{\pi^{2}}{2500} \left[\frac{1600 + \pi^{2}}{2500} - \frac{80\pi}{2} d\pi \right] d\pi$$

$$\int_{15}^{8} \frac{\delta}{15} \frac{\pi}{40} = \frac{1}{2500} \left[\frac{1600\pi^{2}}{1600\pi^{2}} + \frac{\pi}{5} - \frac{80\pi^{4}}{4} \right]_{0}^{40}$$

$$= \left(\frac{100}{2500} - \frac{1600}{5} + \frac{1600}{5} - \frac{80\pi^{4}0}{4} \right]_{0}^{7}$$

= 1360 m

$$\begin{aligned} \left(z = 2 \cdot 1 \times 10^{5} \text{ N}\right) \text{ mm}^{2} = 2 \cdot 1 \times 10^{5} \text{ EN}_{1}^{2} \\ \in \left(z \cdot 1 \cdot x \cdot t = (z \cdot 1 \times 10^{5}) \text{ T} \left(20 \times 11 \times 10^{5} \times 12\right) \\ = 2 \cdot 032 \cdot 8 \times 10^{6} \text{ T} \text{ EN}_{1} \text{ m}^{2} \\ \text{where } - \text{ T} = \frac{\text{m}^{4} \text{ units}}{13 \cdot 0} \text{ T} \frac{2 \cdot 032 \cdot 8 \times 10^{6} \text{ T}}{13 \cdot 0} = 1049 \text{ F} 2 \text{ Im}^{4} \text{ Im}^{4} \\ \text{H}_{1} = \frac{\text{C} \text{ T} \text{ Lev}_{1}}{\int_{0}^{1} y^{2} \text{ ds}} = \frac{2 \cdot 032 \cdot 8 \times 10^{6} \text{ T}}{13 \cdot 0} = 1049 \text{ F} 2 \text{ Im}^{4} \text{ Im}^{4} \\ \text{H}_{1} = \frac{\text{C} \text{ T} \text{ Lev}_{1}}{\int_{0}^{1} y^{2} \text{ ds}} = \frac{2 \cdot 032 \cdot 8 \times 10^{6} \text{ T}}{13 \cdot 0} = 1049 \text{ F} 2 \text{ Im}^{4} \text{ Im}^{4} \\ \text{H}_{1} = \frac{\text{C} \text{ T} \text{ Lev}_{1}}{\int_{0}^{1} y^{2} \text{ ds}} = \frac{2 \cdot 032 \cdot 8 \times 10^{6} \text{ T}}{13 \cdot 0} = 1049 \text{ F} 2 \text{ Im}^{4} \\ \text{H}_{2} = \frac{1049 \text{ S} \text{ T}}{100} \text{ Im}^{4} \\ \text{E} \text{ Im}^{2} \text{ S} \text{ Im}^{2} \text{ S} \text{ S} \text{ S} \text{ S} \text{ Im}^{4} \text{ Im}^{2} \\ \text{Max} \text{ S} \text{ M} \text{ (IO)} \text{ Im}^{4} \\ = 11960 \text{ T} \text{ N} \text{ S} \text{ S} \text{ S} \text{ S} \text{ Im}^{6} \text{ Im}^{6} \\ \text{H}_{1} = \frac{M}{2} = \frac{11960 \text{ T}}{\frac{7}{9}} \text{ S} \frac{2 \text{ F}}{9} = \frac{9}{0.3} \text{ S} \text{ Im}^{6} \text{ Im}^{4} \\ \text{H}_{2} = \frac{M}{2} = \frac{11960 \text{ T}}{\frac{7}{0.5}} \text{ S} \text{ S} \text{ S} \text{ O} \text{ Im}^{6} \\ \text{H}_{2} = \frac{11960 \text{ T}}{\frac{7}{0.5}} \text{ S} \text{ S} \text{ O} \text{ Im}^{4} \\ \text{Im}^{4} = \frac{11960 \text{ T}}{\frac{7}{9}} \text{ S} \frac{1000 \text{ F}}{100} \text{ Im}^{4} \\ \text{Im}^{5} \text{ Im}^{5} \text{ S} \text{ S} \text{ S} \text{ S} \text{ S} \text{ Im}^{6} \text{ Im}^{4} \\ \text{Im}^{4} = \frac{11960 \text{ T}}{\frac{7}{9}} \text{ S} \frac{1000 \text{ Im}^{4}}{\frac{7}{9}} \text{ S} \frac{11000 \text{ T}}{\frac{7}{9}} \text{ S} \text{ S$$

Desiration of their ortal theust of a Two hinged Arch. dse TØ B Consider the flerned dependention of a crimed sib. let ACB depresents the center line of a cruned only subjected to valiable B.M. let us find the horizontal & restral displace onests of of end B with deference to A. consider the effect of B.M on an element of length ds. The element tues Theorigh an angle di, The part AC of the onits being unchanged & the chord CB will They are then to a position CB. Theough an angled? They B, B, B, gives horizondal displacement, & BB2 gives veeka displacement of B. 8782 = $Cos \left[BB, D_2\right] = \frac{B_1 D_2}{RB}$ - BB, COS BB, B2 = 12, B2 - 0 BB1 2 CBx di ---- D put (in @ BIB2 = (CB×di) Cos BBIB2 =) (B, di x Cos BCD (Spritz CR.) di. (CB) CO. BCD direct = BG => di (CD) -(i) B1B2=) di. y

0

0

0

۲

۲

۲

0

0

0

from Bending egn MICI : R= radius of currodur = di M(1) M = Exdi =) di= <u>mxdi</u> $\frac{Mds}{T.E} = dT \qquad (1) \qquad Myds = 0$ Substituting @ in D BiB2 = de GD (on y.d. J(M-Hy)yds =0 Jer - Hyzdaj =) yx Mds Hyds - JHyrds = 0 BiB2 =) Myds . The total honzortal displacement of 8 Juyde= $B = \int \frac{Myd_3}{E\Sigma} \longrightarrow (3) \frac{J_{Myd_3}}{J_{y^2d_3}} = H.$ My; The total reeffeal displacement of B B= Mads Fr Two hinged auch having no yielding of suppords =) $0 = \int \frac{4y - 4y^{2}}{E^{2}} d_{2} + \int \frac{4y}{y^{2}} d_{3} \int \frac{My}{E^{2}} = 0 \quad (0) \quad \left(\frac{4 - 4y}{E^{2}}\right) \frac{y}{y^{2}} = 0$ 0= J EI H= Jy2 ds Jy2 ds H= Jy2 ds. M= (4-Hy)

let Hy be horizontal theust due to sive in temperature by Ht - A B 1. Sim Lat The increase in homeontal span dB=Ldd. =) Lat where, + = temperature a = corethiert of thermal expansion. The B.M on element at y height 'y's M = Ht.y M= Hty . . Total increase in span due to bending of chined bay = Jo My. ds 1 my ds = Lat 10 Ht.y.y & alat Hat 142 Hz 142 32 ds JH+ y2 dy = Lat the fit of Ht Jy2 ds = Lat TE' H 12= 52 Ht 2 De y2 ds HJJyeds = Escar 1 the priat

Two hinged anches 1. Statically Andeterminde to degree on. 2. Might develope temperature strendes

- 3. Sarry to avail Storicturally more empirent
- y. Will develope soberny due to intering our yielding of supports

there hinged andes statically determinate

Polorecu in deorp. causes "numery in certal sise. but no storing

Early to analyse, But is construction, the construction, the additional expanditum since this is decompaditum no storence due to support sinking

For Palabolic anch

Hor: Wrocyd @ support = H = 152769 882

Man. B.M = Hx o

 $M = \frac{15 \sqrt{162} \times 15 \sqrt{122}}{88^2}$

Objective Questions:

1. In the slope deflection equations, the deformations are considered to be caused by

i) bending moment ii) shear force iii) axial force

The correct answer is

- a) only (i)
- b) (i)and(ii)
- c) (ii) and (iii)
- d) (i), (ii) and (iii)

2. For a symmetrical two hinged parabolic arch, if one of the supports settles horizontally, then the horizontal thrust

- a) is increased
- b) is decreased
- c) remains unchanged
- d) becomes zero
- 3..Slope-deflection is developed by
- a) Maney
- b) Hardy cross
- c) Muller
- d) Gumbel
- 4. The slope deflection equations give the relationship between

a)slope and deflection only

b)BM and rotation only

c)BM and vertical deflection only

d)BM ,rotation and deflections

5. In slope deflection method the displacements considered are due to

a)SF

b)BM

c)Axial force and BM

D)SF and BM

6. The number of simultaneous equations to be solved in the slope deflection method is equal to a)static indeterminacy b)kinematic indeterminacy c)no of joint displacements in the structure d)none of the above 7. The slope deflection method formulates a) equilibrium conditions only b)compatibility conditions only c)both equilibrium and compatibility conditions d)either equilibrium or compatibility conditions 8. The slope deflection method in structural analysis falls in the category of a)force method b)flexibility method c)consistent deformation method d)stiffness method 9.In slope deflection method the no of unknown rotations at various joints are determined by considering a)the equilibrium of joints b)the rigidity of joint c) the equilibrium of structure d)none of the above 10.In slope deflection method, the end moments for any member are expressed a)as zero b)in terms of unknown end rotations c)as equal

d)none of the above

Fill in the blanks:

- 11.Slope-deflection method primarily gives -----
- 12. The horizontal thrust for two hinged parabolic arch is------
- 13. Degree of static indeterminacy of a two hinged arch is ------
- 14. Degree of static indeterminacy of a three hinged arch is ------
- 15. The strain energy due to volumetric strain------ to volume
- 16. The strain energy due to volumetric strain------ to bulk modulus
- 17. The effect of normal thrust in the arch is to shorten the ----- of the arch.
- 18. The radial shear of two hinged parabolic arch is-----
- 19. The normal thrust of any arch is -----
- 20. The net horizontal thrust due to temperature effect is-----

KEY 1- a, 2-b,3-d, 4-b,5-b,6-c, 7-a,8-d,9-c,10-b

11-displacements, 12-H= JMy ds / Jy² ds, 13-1, 14-zero, 15-4, 16-2

17-rib, 18-R.S=H_asin θ-V_acos θ, 19 –N.T-=H_asin θ-V_acos θ, 20-H.T=[Dh/H=-dh/h]