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| . ysis Usi
the Stiffness Methgélg

The conc \ : :
to the anz%:isgsﬁ Elfd mlthe_PTcwoug chapter will be extended here and applied
aad T l-l_amforma:'fls. t will })e shown that once the member stiffness matrix
ssplifn S ation matrix have been developed, the procedure for

p n is exactly the'same as that for trusses. Special consideration will be

given to cases of differential settlement and temperature.

ary Remarks

method applies to beams, we will first

Before we show hbw the stiffness
d definitions related to these members.

discuss some preliminary concepts an

Miember and Node identification. In order to apply the stiffness
method to beams, we must first determine how to subdivide the beam into
its component finite elements. In general, each element must be free from
Joad and have a prismatic cross section. For this reason the nodes of each
element are located ata support or at points where members are connected
together, where an external force is agplied,where_ the crqss—sectnonal area
suddenly changes, OT where the vertical or rlotanonal dlspl_acc::nent at a
point is to be determined, For example, consider the beam in Fig. lS:la.
Using the same scheme as that for trusses, four nodes are'spccgtfed
numerically within 2 circle, and the three e‘l'emcr‘l‘ts are 1(31ent1f}ed
numerically withina square, Also, notice lhatl the “near .and tfnr ends of
each element are identified by the arrows written alongside cach element.

Fig. 15-1
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CHAPTER 15 Beam Analysis Using the Stiffness Method

Global and Member Coordinates. The global coordinate system will
be identified using x, y, z axes that generally have their origin ata node and
are positioned so that the nodes at other points on the beam all have positive
coordinates, Fig. 15-1a. The local or member x', y', ' coort;lmates h'ave
their origin at the “near” end of each element, and the positive x' axis is’
directed towards the “far” end. Figure 15-1b shows these coordinates for
element 2. In both cases we have used a right-handed coordinate system, so
that if the fingers of the right hand are curled from the x (x") axis towards
the y (') axis, the thumb points in the positive direction of the z (z") axis,
which is directed out of the page. Notice that for each beam element the x
and x” axes will be collinear and the global and member coordinates will all
be parallel. Therefore, unlike the case for trusses, here we will not need to
develop transformation matrices between these coordinate systems.

Kinematic Indeterminacy. Once the elements and nodes have been
identified, and the global coordinate system has been established, the
degrees of freedom for the beam and its kinematic determinacy can be
determined. If we consider the effects of both bending and shear, then each
node on a beam can have two degrees of freedom, namely, a vertical
displacement and a rotation. As in the case of trusses, these displacements
will be identified by code numbers. The lowest code numbers will be used
to identify the unknown displacements (unconstrained degrees of
freedom), and the highest numbers are used to identify the known
displacements (constrained degrees of freedom). Recall that the reason
for choosing this method of identification has to do with the convenience
of later partitioning the structure stiffness matrix, so that the unknown
displacements can be found in the most direct manner.

To show an example of code-number labeling, consider again the |

continuous beam in Fig. 15-1a. Here the beam is kinematically
indeterminate to the fourth degree. There are eight degrees of freedom,
for which code numbers t through 4 represent the unknown displacements,
and numbers 5 through 8 represent the known displacements, which in
this case are all zero. As another example, the beam in Fig. 15-2a can be
subdivided into three elements and four nodes. In particular, notice that
the internal hinge at node 3 deflects the same for both elements 2 and 3;
however, the rotation at the end of each element is different. For this
reason three code numbers are used to show these deflections. Here there
are nine degrees of freedom, five of which are unknown, as shown in
Fig. 15-2b, and four known; again they are all zero. Finally, consider the
slider mechanism used on the beam in Fig. 15-3a. Here the deflection of
the beam is shown in Fig. 15-3b, and so there are five unknown deflection
components labeled with the lowest code numbers. The beam is
kinematically indeterminate to the fifth degree.

Deveiopment of the stiffness method for beams follows a similar
procedure as that used for trusses. First we must establish the stiffness
matrix for each element, and then these matrices are combined to form
the beam or structure stiffness matrix. Using the structure matrix
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SECTION 15-2

equation'we Cag }he“ I—;’l“_)cced 0 c.ietermi“e the unknown g; 1

(he pnodes and from this determine the reactions on the bSP acements
?temal shear and moment at the nodes € beam and the
n

i Vi

Beam-Member Stiffness Matrix -«

567

(e Beam-Member Stiffnags Matrix

n this section We will develop the stiffness matrix for a beam ele
it member having a constant cross-sectional are g

AN : a and referenced from
e Jocal X'+ s 2 coordinate system, Fig. 154, The origin of the

coordinates s plzlced atthe *ncar”end N,and the positive x" axis extends
joward the “f.ar. end F. There are two reactions at each end of the
clement, consisting of sh.ear forces Iny and gy and bending moments
v and grz These loadings all act in the positive coordinate directions,
In particular, the moments gy and g are positive counterclockwise
since by the right-hand'rulc the moment vectors are then directed aloné
(he positive 2" axis, which is out of the page. _

Linear and angular displacements associated with these loadings also
follow this same positive sign convention. We will now impose each of

these displacements separately and then determine the loadings acting
on the member caused by each displacement.

’

y
Iy dny o ey '
g - Uy 8 qpy diy
qnz dny ™ kTR ® ;
positive .sign convention Fig, 154

v Displacernents. When a positive displacement dy is imposed while
other possible displacements are prevented, the resulting shear forcc_es and
bending moments that are created are shown in Fig. 15-5a. In pgrtlcular,
the moment has been developed in Sec. 11-2 as Eg. 11-5. Likewise, when

dryisimposed, the required shear forces and bending moments are given
in Fig. 15-5b,

= L] dNy' . 6LE! dNy qN:
(o =
< 6E] ‘ 12k
QNz -I—‘i— dNY "_L'__dN}‘ qu =

y' displacements

(a)

(b) Fig. 15-5

Scanned with CamScanner




568

CHAPTER 15 Beam Analysis Using the Stiffness Method

S _ OEL ,
GEI f e,
" 8] ¥ d e i
” {an 3 Fz
(}!..:, — f! (,-\"4. L ] ;
K e e
" -‘_u ‘_& - "--.____'*,__‘_f ‘>’ .?
/ A e 2 o)
' Leer, — aw=2fd dre dre == -dp,
qr = 7 ¢ ot
L
Rotsticns.  If a positive rotation dyz is imposed while all other

possible displacements arc
moments necessary for the deform

particular,the moment res

and 11-2. Cikewise, when ¢

in Fig. 15-6b.

prevented, the required shear forces and

ation are shown in Fig. 15-6a. In

ults have been developed in Sec. 11-2 as Egs. 11-1
.. is imposed, the resultant loadings are shown

By superposition, if the above results in Figs. 15-5 and 15-6 are added,
the resulting four load-displacement relations for the member can be

expressed in matrix form as

; ; Ny Ny 5 Fy Bt
[ i 10EL 6EL. - 12E1 . 6EL][
any 13 12 = I3 I2 Ny
' 6EI 4EI 6EI - 2ELf| ,
qnz T _ = - NZ
w24l ‘6EL - . ~12El 6ET E
A PRI TR BTETR R ER | B
| 6E1 2EL . -6EL =-=AEL ||
L QFZ e L2 ; L . LZ L Al Fz ]
These equations can also be written in abbreviated form as
q=kd (15-2)

The symmetric matrix k in Eq. 15-1 is referred to as the member stiffness
matrix. 'The 16 influence coefficients k;; that comprise it account for the
shear-force and bending-moment displacements of the member. Physically
these coefficients rcpresent the load on the member when the member
undergoes a specified unit displacement. For example, if d y = 1,Fig.15-5a,
while all other displacements are zero, the member will be subjected only
to the four loadings indicated in-the first column. of the k matrix. In a
similar manner, the‘other columns of the k matrix are the member loadings
for unit displacements identified by the degree-of-freedom code numbers
listed above the columns. From the development, both equilibrium and
compatibility of displacements have been satisfied. Also, it should be noted
that this matrix is the same in both the local and global coordinates since
the x’, ', 2z’ axes are parallel to x, y, z and, therefore, transformation
matrices are not needed between the coordinates.
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i
pplication of the Stiffness Method for Beam Analysis
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all the member stiffness matrices have bee

?srsl;;me theot 7 s stiffness matrix K.%]?isr[?;:;ligs‘t;ipznliﬁ;
:cm first knowing the o.:.mgm of cach element in the member stiffness
alrit Here the rorws ‘an columns of each k matrix (Eq. 15-1) aré
ideﬂliﬁcd by the two L;‘lde numbers at the near end of the member
(My- Ny followed hy those at the far end (F, F,). Therefore, when
sssembling the matrices, each clement must be placed in the same location
of the K matrix. In this way, K will have an order that will be equal to
ihe highest code number assigned to the beam, since this represents the
otal number of degrees Qf freedom. Also, where several members are
ed to a node, their member stiffness influence coefficients will
e same position in the K matrix and therefore must be
 glgebraically added together to determine the nodal stiffness influence
for the structure. This is necessary since each coefficient
he nodal resistance of the structure in a particular direction
n a unit displacement (y' or z') occurs either at the same
or at another node. For example, K3 represents the load in the direction
and at the location of code number “2” when a unit displacement occurs

0 the direction and at the location of code number “3.”

represents t
v' or :,) Whe

'

15-4 Application of the Stiffness Method for Beam Analysis
_ | 2T Y

ess matrix is determined, the loads at the nodes

Once the structure stiffn
nts using the structure

of the beam can be related to the displaceme
stiffness equation

Q = KD

Here Q and D are column matrices that represent both the known and
unknown loads and displacements. Partitioning the stiffness matrix into
the known and unknown elements of load and displacement, we have

e
|
iR
o,
$iie
SH=
= E~

which when expanded yields the two equations
Q, = KD, + KDk
Q, =KD, * KDy

(15-3)
(15-4)

e first of these

are determined from th
are computed

Th :
¢ unknown displacements D,
{ reactions Q.

€quat; :
f{?r ailons. Using these values, the suppo?
€ second equation.
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W
¥ Y ¥ A B k9 ‘.x-.&‘]
P L
actual loading
(a) z
2 wlL SN wL
l AREEN \
3 Yy v y il
4, 4 \2
wl? wi.” wlL
1 12 12
actual loading and
clement loading reactions on fixed-
supported element
Fig, 157 ; (c)

intermediate Loadings. For application, it is important that the
elements of the beam be free of loading along its length. This is necessary
since the stiffness matrix for each element was developed for loadings
applied only at its ends. (See Fig. 15-4.) Oftentimes, however, beams will
support a distributed loading, and this condition will require modification
in order to perform the matrix analysis.

To handle this case, we will use the principle of superposition in a
manner similar to that used for trusses discussed in Sec. 14-8. To show its
application, consider the beam element of length L in Fig. 15-7a, which
is subjected to the uniform distributed load w. First we will apply fixed-
end moments and reactions to the element, which will be used in the
stiffness method, Fig. 15-7h. We will refer to these loadings as a column
matrix —. Then the distributed loading and its reactions qo are applied,
Fig. 15-7c. The actual loading within the beam is determined by adding
these two results. The fixed-end reactions for other cases of loading are
given on the inside back cover. In addition to solving problems involving
lateral loadings such as this, we can also use this method to solve problems
involving temperature changes or fabrication errors.

Member Forces. The shear and moment at the énds of each beam
element can be determined using Eq. 15-2 and adding on any fixed-end
reactions qq if the element is subjected to an intermediate loading. We have

q =kd + q (15-5)

If the results are negative, it indicates that the lo

ol ading acts in the opposite
direction to that shown in Fig. 154, ;
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' ~ 2y 5 &
f ARNALIVCIC
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INALY 3U5

»ROCEDURE

/ following method provlides a means of d
d-splacﬁments' support reactions, and internal |
llembefs or finite elements of a statically

indeterminate beam,

elermining the

'oadings for the
determinate or statically

Notaor i

, pivide the beam into [inite elements and arbitrarily identify each
element and its 110§les. U§e a number written in a circle for a node
and @ number written 1n a square for a member, Usually an
clement extends between points of support, points of
concentrated loads, and joints, or o points where internal loadings -
or displacements are o be determined.

» Specify the near and far ends of each element symbolicélly by

directing an arrow along the element, with the head directed
toward the far end. -

. Ateach nodal point specify numerically the y and z code numbers.
In all cases use the lowest code numbers to identify all the
unconstrained degrees of freedom, followed by the remaining or
highest numbers to identify the degrees of freedom that are
constrained. = : ' : : :

"+ From the problem, establish the known displacements D, and
known external foads Q. Include any reversed fixed-end loadings
if an element supports an intermediate load.

Srructure Stiffness Matrix o

« Apply Eq.15-1 to determine the stiffness matrix for each element -
expressed in global coordinates. BT :

* After each member stiffness matrix is determined, and the rows
and columns are identiﬁéd with the appropriate code number_s,
assemble the matrices to determine the structure stiffness matrx,
K. As a partial check, the member and structure stiffness matrices
should all be symmetric.

Displacements and Loads | R :
* Partition the structure stiffness equation and carry out the matrix
multiplication in order to determine the unknown displacements
D, and support reactions Q. ' :
o imerfl:::l shear and moment ¢ at the ends of f:ach bea}T
element can be determined from Eq. 15-5 accounting for the
additional fixed-end loadings. '
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P T O T T T T I T ey
e X ; ;
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[ TR .,l.l‘ . .k,

Determine the reactions at the supports of the beam shown in Fig. 15-8a.
LT is constant.

5kN

N&‘s “ &...... pren T -"'""';

el ol m_J

(a)

Fig. 15-3

Solution

Netarion.  The beam has two elements and three nodes, which are
identified in Fig. 15-8b. The code numbers 1 through 6 are indicated
such that the lowest numbers 1-4 identify the unconstrained degrees

of freedom.
The known load and displacement matrices are
0]1
=3 |2 05
Q 0|3 : [o] 6
0|4
6 5 SZkN
4 r 3 _ d 1

b *
DN ..._mw.ﬂ:@
al OJ:’ : LJ @3

(b)

Member Stiffness Matrices. Each of the two member stiffness
matrices is determined from Eq. 15-1. Note carefully how the code
numbers for each column and row are established. '

6 4 > 3 5 3 2 1
15 1.5 =15 1:5 1.5 1515 L5
k, = EI 1502 gt f 1 k, = EI 15 2 =15 1
=158 =18 1:5° - =15 ' =150 2155 1.5 =15
1.5 1 =15 2 15 1 =1.5 2

Lo ooy
[l B Y
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SECTION 15-4 Application of the Stiffness Method for Beam Analysis 572

.._-c--""—___—_ ______________._—-—
apenienfs and Loads. . We can now assemble these elements into
Nis ';uc“”c o(iffness matrix. For example, element Kjy=0+2=2
he !5 4 1.5 = 3, ete. Thus, '
hss 0 = KD
1 2 3 4 5 6
- 0 2 -15 1 0§ 15 0 |[D]
_5 15 15 ~15 0 §=15 0 ||
o |=Eif 1. =18 4 1§ 0 15D
0 o8 1 2 {-15 15| Dy
e {575 © -i5] 3  -15|| 0
O | 0 0 1.5 151 -15 15[ 0
¢ matrices are partitioned as shown. Carrying out the multiplication
for the first four rows, we have
0=2D;— 15D, + D3+ 0
_3_ = 15D, +15D; — 15Ds +0
EI
0= Dl -_— 1,502 + 4D3 + Dy
0=0+0+Dj+204
Solving,
: 16.67
Di=~"Er
26.67
D, = ~"FI
6.67
Ds =~ "EI
= 333
4. EI :
e ows, g1ves
Using these results, and multiplying the last tWQ.T < 333
26.67 - 1.551(4——)
- Qs = l.SEI('— 1_6_.9.7-) - I.SEI(-———E-I“') + 0 El
El ' Ans.
= 10kN
' 3.33)
 6.67 ==
Q=0+0+ 1'551("#151 ) + 1-5E1( EI
Aﬂb} .

= —5kN /
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(a)
5 4 3
1s 1 2
B35~ seoosesemera ﬁ
6 ] gyess o [ ?_3_)%‘/1\!0
[ = el
I L L |

(b)

—

Determine the internal shear and moment in member 1 of the beam
shown in Fig. 15-9a. EI is constant.

Solution

Notation. In this case the beam has only two unknown degrees of
freedom, labeled with code numbers 1 and 2, Fig. 15-9b. Notice that
the loading M, is a negative quantity. The known load and displacement
matrices are

013

0 1 014
Q"RLMn]z De=1ols
0|6

Meniber Stiffnesy Marrices.  Applying Eq. 15-1 to each member, in
accordance with the code numbers shown in Fig. 15-9b, we have

5 6 4 1 4 1 3 2
2126 ¢ 12 i*s 12 6 _12 51,
17 i d® .- B . 1R A ¢ R I
ecwell TR ST e il - S RET TY
R 5 T o & T A < SR
_@E 2 _% L2 I &2 8 4l
i ¢ Li- L L jo fF R B

Displacements and Loads.  The structure stiffness matrix is formed
by assembling the elements of the member stiffness matrices. Applying
the structure matrix equation, we have

Q=KD
1 2 3 4 5 6
1 o0 7 8 2 :i_6 0 6 2 (D, |1
L L 13 12 L
21 —M, 4 - i 0 0 D |2
......... L L2 L
6 6 | 12 12
-3 R = e | 2% 2 0 0 0 |3
2 y k| 3
5| L 1;:. L L
6 i 12 24 12 6
W - gRe B s S B 7 B | e
6 12 12 6
5 QS LZ 0 : 0 L3 zs EE 0 5
2 6 6 4
6_ QGJ . £ 0 -E };—2 E _0_6
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-EEECSults are shown in Fig. 15-9¢.

S
ECTION 15— Application of the

Stiffness Method for Beam Analysis 575
’_J.M,"w M
; first two rows to d : o :
Mulli pbﬂng the ctermine the displacements, yields
e RET 2E1
= —L D] + TDZ
_ 2EI AET
So that, Dy = MyL
14E1
2MyL
D, = —
E 7EI
As in the last example, the reactions are obtained from the

multiplication of lhe.remaining rows. For example, the force reaction

ot the ight support 18 :

_6EI (ﬂ)
12 \14EI

6EI (_ ZMOL) 9M,

0s = 12 7EI 7L
The internal loadings at nodes 1and 2 are det_ermined from Eq. 15-2.
We have i i
shiip A
= _ S
B TE 0 o
s : ',_L_g ' LZ L3 - LZ
6 Al e oL 0 |6
g6 'L_‘f 7 Lz 1. |
qs ' = _E s };3 I3 12
. 6 7 6 4 MQ‘E‘L 1
qu i 1z ‘E Ll | 14E1
6EI MOL) e §£‘1’9 Ans.
N 7?(1451 b
2EI MoL) M Ans.
96" T(MEI 7
6EI { MoL ) ?.1_‘_49 Ans.
CL RN (14El 7L
4EI MOL) _2M Ans.
2 ey (1451 7
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