CHAPTER

Displacement Method of Analysis:
Slope-Deflection Equations
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ln.lhts chap.lcr we will briefly outline the basic ideas for analyzing structures
using the displacement method of analysis. Once these concepts have been
presented, we will develop the general equations of slope deflection and then
use them to analyze statically indeterminate beams and frames.

Displacement Method of Analysis: General Proctedures

All structures must satisfy equilibrium, load-displacement, and
compatibility of displacements requirements in order to ensure their
safety. It was stated in Sec. 10-1 that there are two different ways to
satisfy these requirements when analyzing a statically indeterminate
structure. The force method of analysis, discussed in the previous chapter,
is based on identifying the unknown redundant forces and then satisfying
the structure’s compatibility equations. This is done by expressing the
displacements in terms of the loads by using the load-displacement
relations. The solution of the resultant equations yields the redundant
reactions, and then the equilibrium equations are used to determine the
remaining reactions on the structure.

The displacement method works the opposite way. It first requires
satisfying equilibrium equations for the structure. To do thi; the unknown
displacements are wrilten in terms of the loads by using the load-
displacement relations, then these equations are solved for the
displacements. Once the displacements are obtained, the unknown loads
are determined from the compatibility equations using the load-
displacement relations. Every displacement method follc?ws this general
procedure. In this chapter, the procedure will be generalized tp p}'odl.lce
the slope-deflection equations. In Chapter 12, the moment-distribution
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method and instead makes it possible to apply , Ofthe
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ain tions that allow direct calculation of (he o s
converging correc :

Finally, in Chapters 14, 15, _zmd 16: we wil! iltl,l]JStmte how tq ] ;”;e:m

¢ d using matrix analysis, making it suitable for use oy A ] hig
nulzlf‘?hc discussion that follows we will shov:a how o iq tifpumr'
unlllnuwn displacements in a st:uclture[nntlijewe WII::](:evelo somes :]Ee
important kmddisp!acemenl re ahqns ord 'aHI] ?n rame members‘]he
results will be used in the next sec;in?l ar; ml ater chapters iy ba;
for applying the displacement method of analysis, Sis

Deqgrees of Freedom. Whenaa struc.turc is loaded,speciﬁed Points
it, called nodes, will undergo unknown displacements, These diSPlacemeng
a;c referred to as the degrees f’f'ffji’ifd”m for the strutlzture, and i the
displacement method of analysis it Is important to specify thege degree
of freedom since they become the unknowns when the method ig applieq
The number of these unknowns is referred to as the degree in Which the
structure is kinematically indelerminat'e.

To determine the kinematic indeterminacy we can imagine the structyre
to consist of a series of members connected to nodes, which are usualy
located at joints, supports, at the ends of a member, or where the member
have a sudden change in cross section. In three dimensions, each node op
a frame or beam can have at most three linear displacements and three
rotational displacements; and in two dimensions. each node can have g
most two linear displacements and one rotational displacement
Furthermore, nodal displacements may be restricted by the supports, or
due to assumptions based on the behavior of the structure, For example,
if the structure is a beam and only deformation due to bending is
considered, then there can be no linear displacement along the axis of
the beam since this displacement is caused by axial-force deformation.

To clarify these concepts we wil] consider some examples, beginning with
the beam in Fig, 11-1q, Here any load P applied to the beam will cause
node A only to rotate (neglecting axial deformation), while node B is
completely restricted from moving. Hence the beam has only one unknown
c!egree of freedom, 6 ,, and is therefore kinematically indeterminate to the
first degree. The beam in Fig. 11-16 has nodes at A, B, and C, and so has
four degrees of freedom, designated by the rotational displacements o
0p, Oc, and the vertical displacement Ac. Itis kinematically indeterminat¢
o the fo“f th degree. Consider now the frame in Fig. 11-1c. Again, if ,w;
lne%llL:zclfamal deformation of the members, an arbitrary loading P apph;e
d(') ¢ [rame can cause nodes B and ¢ to rotate, and these nodes can e

isplaced horizontally by an equal amount, The frame therefore has thr®

degrees of freedom, g,.9 A St mat : : pate
] y s y € l mdete
t0 the third degree, BYc, Qp, and thus it is kinematically ot

In Summary, specifyin

i L . per of
. 8 the kinematic in minacy or the num
unconstraine( degrees deter y

x 1
of freedom for the structure is a necessary
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o applying a displacement method of analysis,
step \\;l;COf unknowns in the problem, based on the ass

urm Linﬂ the deformation behavior of the structure.
r

It identifies the
umptions made
Furlhcrmnr& once

gl dal displacements are known, the deformation of the structural
ese nrs can be completely specified, and the loadings within thie

mirmnh ers obtained.

m

11-2 slope-Deflection Equations

\q indicated previously. the method of consistent displacements studied
;u'chapler 10 is called a force method of analysis, because it requires
writing equations that rt?ia(e thfe an'nown forces or moments in a
;[mcl{lr& Unforlunalely_. l_ls use is limited to structures which are not
i'ﬂilh]\' indeterminate. This 1s because much work is required to set up the
,_«g‘mp-atibilif}' equatioqs. a_nd _furlhcrmore cach equation written involves
oIl the unknowns, making 1t difficult to solve the resulting set of equations
unless a computer is available. By comparison, the slope-deflection
method is not as involved. As we shall see, it requires less work both to
write the necessary equations for the solution of a problem and to solve
these equations for the unknown displacements and associated internal
loads. Also, the method can be easily programmed on a computer and
used to analyze a wide range of indeterminate structures.

The slope-deflection method was originally developed by Heinrich
Manderla and Otto Mohr for the purpose of studying secondary stresses
m trusses. Later, in 1915, G. A. Maney developed a refined version of
this technique and applied it to the analysis of indeterminate beams and
framed structures.

General Case. The slope-deflection method is so named since it relates

the unknown slopes and deflections to the applied load on a structure. In
order to develop the general form of the slope-deflection equations, we will
consider the typical span AB of a continuous beam as shown in Fig. 11-2,
ichis subjected to the arbitrary loading and has a constant EI. We wish
lorelate the beam’s internal end moments M g and Mg, in terms of its
Ehree_ degrees of freedom, namely, its angular displacements 04 and 0p,
o Micar displacement A which could be caused by a relative settlement
;llween the supports. Since we will be developing a formula, moments
3 ch:t?“far displacements will be considered positive when they act
d:‘spfacwe = fh"_"’ span, as shown in Fig. 11-2. Fqnhern}orf.:, the hueu:
Cause ement A s considered positive as shown, since this displacemen
*he cord of the span and the span’s cord angle ¢ to rotate c!ocfmuse.
s“PflE]!Jﬂ;i:-e_deﬂeclion_ equations can be obtained by using the pr;nc:tp:; ;f
*Pport dulon by considering separately the moments developed a oy
€ to each of the displacements, 0 4, 05, and A, and then the lo

------

APl SETE
Elisconstanl
positive sign convention

L A
' - 1
‘ deflection I{,; _a;_L

Fig. 11-2
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v "\ A’ [
( A - \ R R \L L
| B i L' P ___f Mpa J,

! - V=0, conjugate beam -,

real‘:»)cam (b)

Angular Displacement at A, 0,4, Consider node A of the member shoyr :
Fig. 11-3ato rotate 0, while its far-end node B is held fixed. To delennmwnm
moment M , 5 needed to cause this displacement, we will use the Con'ue the
beam method. For this case the conjugate beam is shown in Fig. 11_3bJNga_te-
that the end shear at A" acts downward on the beam, since 9 AlS Clolck‘(:ti;:
The deflection of the “real beam™in Fig. 11-3a is to be zero at 4 and B
therefore the corresponding sum of the moments at each end A" st ;nd
the conjugate beam must also be zero. This yields of

1/M L 1/M
=My =0 [—(—AB) }—_ (284}, |2L _
C 2\ E1 /*)3 72\ e JE|F =0
. 1M L [1/M
(+EMp = 0; [-( BA) L _[1({Mas), |2L
? 2\Er )37 [2Er B F tal =0

from which we obtain the following load-displacement relationships.

_4E]
ol "4
_____'_'————__

_2E]

s ™

Angular Djs

rotates (o itsprl ii:;e[mcn.l at B, 0. !n a similar manner, if end B of the beam

ek ﬂpp“édpomllon fp, while end A is held fixed, Fig. 114, we can

ot moment My, to the angular displacement 6 and the
ent M, at the wall. The results are

Mgy = ——g, (11-3)

R
Mpp = ——}5198 (114)
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Relative Lincar [)isplaccmc'm, A. I the far node B of the member is

disp'ﬂfed r?‘t’l""’c to A.so that the cord of the member rotates clockwise

tive d1splaccmcnl) and yet both ends do not rotate, then equal but

.o moment and shear reactions arc developed in the rrlle;'nbcr

2. As before, the moment M can be related to the displacement A

wsing the conjugate-beam method. In this case, the conjugate beam

Fie. 11-5h. is frec at both ends, since the real beam (member) is fixe(j

° srted. However, due to the displacement of the real beam at B, the

moment at the end B’ of the conjugate beam must have a magnitude of A
o5 indicated-* Summing moments about B’, we have

i) [telio)- -

(11-5)

(+ZMp =0

— 6E]
MAB:MBAzM:_L_z_'AJ

By our sign convention, this induced moment is negative since for
equilibrium it acts counterclockwise on the member.
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real beam
(b)
(a)
Fig. 11-5

cam were determined by the method

1 ”'IE mome i wn on he CG". & 4"5
nt d ’
lagrams Sho t J d in Scc. L

. SUperposition for a simply supported beam, as explaine

conjugate beam
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Il
r arl

v > _f;f;‘”..u 114

Jl =3 it A“H l_lw_m{f[rﬂ}mf

conjugate heam "

real beam (h)

(a)

Fip. 11-6

Fixed-End Moments. In the previous cases we have Considerey
relationships between the displacements an‘d the necessary moments M,,
and My, acting at nodes A and B, respectively. In general, howeyer, [h‘,
linear or angular displacements of the nodes are caused by loading, acting
on the span of the member, not by mt:)mcnts acting at its nodes, [ um;_.?
to develop the slope-deflection eq uatxf)ns, we must transform these span
loadings into equivalent moments acting at the nodes and thep use the
load-displacement relationships just derived. This is done simply by finding
the reaction moment that each load develops at the nodes, For example,
consider the fixed-supported member shown in Fig, 11-6a, which i
subjected to a concentrated load P at its center. The conjugate beam for
this case is shown in Fig. 11-6b. Since we require the slope at each end 10

be zero,

o (] o

=il

This moment is called a fixed-end moment (FEM). Note that according
to our sign convention, it is negative at node A (counterclockwise) and
positive at node B (clockwise). For convenience in solving problems.
fixed-end moments have been calculated for other loadings and are
tabulated on the insjde back cover of the book. Assuming these FEMs
have been computed for a specific problem (Fig. 11-7), we have

-
e T -
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ion Equation. If the end m :
c-Deflection Mmoments due to each displa
Slﬂl’s 1-1 through 11-5) and the loading (Eq. 11-6) are addedptuceeﬁf:rt
et esultant moments at the ends can be written ¢ . .

I A\
Mas = 2E(E)[29A g 3(:’:) #* (FEM)AB

(11-7)

I A\
SO s

since these two equations are similar, the result can be expressed as a
 gingle equation. Referring to one end of the span as the near end (N)
gnd the other end as the far end (F), and letting the member stiffness be
_ repfese“te.d as k = I/L, and the span’s cord rotation as ¢ (psi) = A/L,
we can write

For Internal Span or End Span with Far End Fixe

My = 2Ek(20y + Or — 3¢) + (FEM)
) d (11-8)

where

My = internal moment in the near end of the span; this moment
is positive clockwise when acting on the span.

E,k = modulus of elasticity of material and span stiffness k = I/L.

. Bx,6F = near- and far-end slopes or angular displacements of the
span at the supports; the angles are measured in radians and
are positive clockwise.

¥ = span rotation of its cord due to a linear displacement, that
is,y = A/L; this angle is measured in radians and is positive
clockwise. 2

(FEM)y, = fixed-end moment at the near-end support; the moment is
positive clockwise when acting on the span; refer to t-he table
on the inside back cover for various loading conditions.

*Tom the derivation Eq. 11-8 is both a compatibility and load-
Placement relationship found by considering only the effects of
®nding anq neglecting axial and shear deformations. It is referred to
 the general slope-deflection equation. When used [or the solution
fProblems, this equation is applied twice for each member span
) B_); that is, application is from A to B and from B to A for span
in Fig. 11-2,

; SECTION 11-2 Slope-Deflection Equations - 439
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P
. W
A/ﬂ—\TI I l rmﬁ
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M,z ‘H““n._
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(a)

AT

Ax
(FEM),z

=°

Pin-Supported End Span. Occasiopally an end span of a beam gp
frame is éupporled by a pin or roller at its far end, Fig. 11-8a. Whep this
occurs, the moment at the roller or pin must be zero: and provided the
angular displacement f g at this support (_lﬂes not h_ave to be d.etermined'_
we can modify the general slope-dellection equation so t.hat it has to ba
applied only once to the span rather than twice. To do this we will app
Eq. 11-8 or Eqs. 11-7 to each end of the beam in Fig. 11-8.This results i
the following two equations:

My = 2Ek(20y + 0F — 3) + (FEM)y
0 = 2Ek(20F + Oy — 3) + 0

Here the (FEM) is equal to zero since the far end is pinned, Fig, 11-8p,
Furthermore, the (FEM)y can be obtained, for example, using the table
in the right-hand column on the inside back cover of this book,
Multiplying the first equation by 2 and subtracting the second equation
from it eliminates the unknown 6 and yields

(11-9)

My = 3Ek(6y — ) + (FEM)y

Only for End Span with Far End Pinned or Roller Supported (11-10)

Since the moment at the far end is zero, only one application of this
equation is necessary for the end span. This simplifies the analysis since
the general equation, Eq. 11-8, would require two applications for this
span and therefore involve the (extra) unknown angular displacement
0p (or 6z) at the end support.

To summarize application of the slope-deflection equations, consider th
continuous beam shown in Fig. 11-9 which has four degrees of freedom.
Here Eq. 11-8 can be applied twice to each of the three spans, i.e., from
AtoB,BtoA,BtoC,Cto B,Cto D,and D to C.These equations would:
involve the four unknown rotations, 8 4, 8, 8, 8. Since the end moments:
at A and D are zero, however, it is not necessary to determine 6 4 and p.
A shorter solution occurs if we apply Eq. 11-10 from B to A and Cto D
and then apply Eq. 11-8 from B to C and C to B. These four equations
will involve only the unknown rotations 6 and 6. '

e, 11-0
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Pegrees 1 ireedom, Label all the supports

-y and joints (nodes) i
‘ codom in
der 1o identify the spans of the beam or frame hclwcen(lhe nozles

py drawing the dcﬂt:clcd‘ shape of the structure, it will be possible
m' identily the number of d_cgrccs of freedom. Here

;_ \ssibly have an angular displacement and g linear displacement
: Comrngrihiﬁr}' at the nodes is maintained provided the members tha;
gre fixed connected to a node undergo the same displacements as
the node. 1f these displ_ncemcms are unknown, and in general they
will be. then for convemence assume they act in the positive direction
so as to cause clockwise rotation of a member or joint, Fig. 11-2.

cach node can

n

fope-Deflection g _ The slope-deflection equations relate
e unknown moments applied to the nodes to the displacements of

the nodes for any span of the structure. If a load exists on the span,
compute the FEMs using the table given on the inside back cover.
Also. if a node has a linear displacement, A, compute ¢ = A/L for
the adjacent spans. Apply Eq. 11-8 to each end of the span, thereby
generating nwo slope-deflection equations for each span. However,
if a span at the end of a continuous beam or frame is pin supported,
apply Eq. 11-10 only to the restrained end, thereby generating one
slope-deflection equation for the span.

Equiiibrium FEquations. Write an equilibrium equation for each
unknown degree of freedom for the structure. Each of these
equations should be expressed in terms of unknown internal
moments as specified by the slope-deflection equations. For HpAmS
and frames write the moment equation of equilibrium at cach
support, and for frames also write joint moment equations of
equilibrium. If the frame sidesways or deflects horizontally, column
shears should be related to the moments at the ends of the column.
This is discussed in Sec. 11-5.

Substitute the slope-deflection equations into the qu.llh!:)‘l'lum
equations and solve for the unknown joint dlSpl?ccmems" AR
results are then substituted into the slope-deflection S tlof
determine the internal moments at the en.dS of each m‘?;nb;t::ise
any of the results are negative, they indicate'co;mter;cezfs oo,
Totation; whereas positive moments and. dispiace
applied clockwise.
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Draw the shear and moment diagrams for the beam shown in Fig. 1-11,
ra é .

|
71 ant. 1
E[ is constan - - !
pronnen i

o m— ==
A ““-——u——-"bﬂ!w et
'4n‘

I 24 1t 8 It

Fip, 11-11
Solutien .'
Stope-Deflection Equations. Two spans must be considered ip this
problem. Equation 11-8 app_llcs to span AB: We can use Eq. 11-1g
for span BC since the end Cis on a roller. Using the formulas for he
FEM:s tabulated on the inside back cover, we have

|
|
\
(a) i
|
|

wl? B 1 5 _ l

(FEM)ap = — 5 = '5(2)04) = —96 k- ft lL
wL? 1 B B

(FEM)pas = 12 = E(Z)(Zﬁl) =096k-ft 1'

' 3PL 3(12)(8 iI

(FEM)BC = == )( ) = =18k ft {

16 16 !
Note that (FEM),p and (FEM)pc are negative since they act
counterclockwise on the beam at A and B, respectively. Also, since

the supports do not settle, i 45 = ¥pc = 0. Applying Eq. 11-8 for span
AB and realizing that 6,4, = 0, we have

My = 2E(é)(29~ + 6F — 3¢) + (FEM)y

I
Mup = zg(a)[z(m + 05 — 3(0)] — %
M,p = 0.08333E10, — 96 O

! ﬁ
Mps = 25(@)[2()3 + 0 — 3(0)] + 96 | 4
Mpa = 0.1667E105 + 96 2
Applying Eq. 11-10 with B as the near end and C as the far end, we have i
. l [
M= 3E(Z)(6N —¢) + (FEM)y %

! |

Mec = 3E(§)(93 -0)-18 l|

i Mpc = 0375E165 — 18 (3; :
emember that Eq. 11-10 i . d)toB |
(far end). 1 10 is not applied from C (near en ) |

—
"
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pquilibrist! Fquations. The above three e
b

quations contai
(nOWNS. The necessary fourth equation com o 1o

es from the conditions

ilibrium at the support B. The free-body j A :
OFiffﬁl_”b_ We have ¥ diagram is shown in
To solve, substitute Egs. (2) and (3) into Eq. (4), which yields
_ 1440
: El

Since 0 15 negative (counte_rclockwise) the elastic curve for the beam
has been correctly drawn in Fig. 11-11a. Substituting 0, into Eqgs.

(1)(3), we get

Myp = —108.0k-ft
Mg, = 720k'f1
MBC =-T720k-ft

Using these data for the moments, the shear reactions at the ends
of the beam spans have been determined in Fig. 11-11c. The shear
and moment diagrams are plotted in Fig. 11-11d. :

m ==

Va=

12k
Vg, =225k Vg, =15k
|
TR ——
= = (t 1’3_—7‘ 'lrc,:s.ok
108k -fth—12 f——126t— 2k-ft T2kt e

(©)

V (k)
55| "
e L3 ()
12.75 2428 32
25
M (k-ft)
54.6
~
\‘
C Nm® 2 em
12.75 '
~108
1, e e
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