# REGULATION OF ALTERNATOR USING SYNCHRONOUS IMPEDANCE METHOD

#### AIM:

To find the regulation of a 3 -  $\phi$  alternator by using synchronous impedance method.

# APPARATUS REQUIRED:

| Sl.<br>No. | Equipment        | Туре       | Range                   | Quantity     |
|------------|------------------|------------|-------------------------|--------------|
| 1          | Voltmeter        | MI         | (0-300/600)V            | 1 no         |
| 2          | Ammeter          | MI         | (0-5/10)A               | 1 no         |
| 3          | Ammeter          | MI         | (0-2.5/5)A              | 1 no         |
| 3          | Rheostat         | Wire-wound | 400 Ω /1.7A<br>145Ω /2A | 1 no<br>2 no |
| 4          | Tachometer       | Digital    | ****                    | 1 no         |
| 5          | Connecting Wires | ****       | ****                    | Required     |

#### NAME PLATE DETAILS:

| DC Motor(prime mover) | 3- φ Alternator |  |
|-----------------------|-----------------|--|
| KW :                  | Power Rating:   |  |
| Voltage:              | PF :            |  |
| Current:              | Line voltage:   |  |
| Speed :               | Speed           |  |
| Exctn : Shunt         | Exctn Voltage:  |  |
| Voltage :             | Rated Current : |  |

| Field current:: |  |
|-----------------|--|
|                 |  |

#### CIRCUIT DIAGRAM:



#### PROCEDURE:

#### **Open Circuit Test:**

- 1. Make the connections as per the circuit diagram.
- Before starting the experiment, the potential divider network in the alternator field circuit and field regulator rheostat of motor circuit is set minimum resistance position.
- Switch ON the supply and close the DPST switch. The DC motor is started by moving starter handle.
- Adjust the field rheostat of DC motor to attain rated speed (equal to synchronous speed of alternator)
- By decreasing the field resistance of Alternator, the excitation current of alternator is increased gradually in steps.

- Note the readings of field current, and its corresponding armature voltage in a tabular column.
- The voltage readings are taken upto and 10% beyond the rated voltage of the machine.

#### **Short Circuit Test:**

- For Short circuit test, before starting the experiment the potential divider is brought back to zero output position, i.e., resistance should be zero in value.
- 2. Now close the TPST switch.
- The excitation of alternator is gradually increased in steps until rated current flows in the machine and note down the readings of excitation current and load current (short circuit current)
- Switch OFF the supply.

#### OBSERVATIONS:

| Sl  | OC test          |                | SI  | S.C. test              |            |
|-----|------------------|----------------|-----|------------------------|------------|
| no. | Field current in | OC voltage     | no. | Field current          | SC current |
|     | Amp.(I f)        | per phase (Vo) |     | I <sub>f</sub> ( Amp.) | I₅ Amp.    |
|     |                  |                |     |                        |            |
|     |                  |                |     |                        |            |
|     |                  |                |     |                        | i.v        |

24/52

#### Procedure to find Armature resistance of alternator:

- Connections are made as per the circuit diagram.
- Switch ON the supply. By varying the rheostat, take different readings of ammeter and voltmeter in a tabular column.

3. From the above readings, average resistance Ra of a armature is found out.

## Connection diagram to find Ra



### **OBSERVATIONS:**

| Sl no. | Armature current I(amp) | Armature voltage<br>Va (volts) | R <sub>dc</sub> =V / I |
|--------|-------------------------|--------------------------------|------------------------|
|        |                         |                                |                        |
|        |                         |                                |                        |

# Procedure to find synchronous impedance from OC and SC tests:

- Plot open circuit voltage, short circuit current verses field current on a graph sheet.
- From the graph, the synchronous impedance for the rated value of excitation is calculated.
- The excitation emf is calculated at full load current which is equal to the terminal voltage at No load.

4. The voltage regulation is calculated at rated terminal voltage.

#### MODEL CALCULATIONS:

$$Z_s = \frac{V_{oC}}{I_{sC}}$$
 for the same I<sub>f</sub> and speed:  $X_s = \sqrt{Z_s^2 - R_a^2}$  [:: R<sub>a</sub> R<sub>dC</sub>]

Generated emf of alternator on no load is

$$E_0 = \sqrt{(v\cos\phi + I_a R_a)^2 + (v\sin\phi \pm I_a X_s)^2}$$

- + for lagging p.f.
- for leading p.f.

The percentage regulation of alternator for a given p.f. is

% Re 
$$g = \frac{E_0 - V}{V} \times 100$$

Where

 $E_0$  - generated emf of alternator (or excitation voltage per phase)

V - full load, rated terminal voltage per phase.

#### MODEL GRAPHS:

Draw the graph between If VS Eo per phase

and If Vs Isc



# PRECAUTIONS:

- (iii) Connections must be made tight
- (iv) Before making or breaking the circuit, supply must be switched off

# RESULT: