SUMPNERS TEST

AIM:

To determine the efficiency and losses of a given transformer accurately under full load condition.

APPARATUS REQUIRED:

Sl. No.	Equipment	Туре	Range	Quantity
			(0-300)V	1 no
1	Voltmeter	MI	(0-300)V	1 no
			(0-600)V	1 no
2	Ammeter	MI	(0-2)A	1 no
		IVII	(0-20)A	1 no
3	Wattmeter	D	(0-150)V LPF	1 ==
		Dynamo type	(0-2.5)A	1 no
	337	D	(0-150)V UPF	1 ==
4	Wattmeter	Dynamo type	(0-10)A	1 no
5	Connecting Wires	****	****	Required

Transformer Specifications:

Two identical 1- φ Transformers	
Transformer Rating :(in KVA)	
Winding Details:	
LV (in Volts):	_
LV side current:	

HV (in Volts): _____

HV side Current:_____

Type(Shell/Core):_____

1 - φ Auto transformer Specifications:

Input Voltage (in Volts):_____

Output Voltage (in Volts): _____

Frequency (in Hz):_____

Current rating (in Amp):_____

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Make the connections as per the circuit diagram.
- The secondary winding terminals of the two transformers are connected in series with polarities in phase opposition which can checked by means of a voltmeter.

ELECTRICAL MACHINES-II LABORATORY

- Before starting the experiment, check the variacs are in minimum output voltage position.
- 4. Close the first DPST-1 switch and switch ON the supply.
- Increase the variac slowly, and apply rated voltage to the primary windings of 1- φ transformers and check the voltmeter reading connected across the secondary terminals.
- 6. If the voltmeter reading is Zero, continue with step 8.
- If the voltmeter reading is not zero, interchange the secondary terminals.
- Now close the DPST-2 switch and vary the variac-2 slowly till rated current flows in the two series-connected secondaries.
- Note down the readings of V₁,V₂, I₁, I₂, W₁, and W₂ and enter them in a tabular column.
- 10. $W_1 = 2P_c$, $W_2 = 2P_{sc}$. Losses of each transformer = $(W_1 + W_2)/2$
- 11. Now the Variacs are brought to zero voltage position and open DPST switches.

OBSERVATIONS:

SI	Voltmeter	Voltmeter	Ammeter	Ammeter	Wattmeter	Wattmeter	Transformer	η
no.	reading	reading	reading	reading	Reading	Reading	losses	=
	$\mathbf{V_1}$	V ₂	I ₁	I ₁	$\mathbf{W_1}$	W_2	$=(W_1+W_2)/2$	op/(op+loss)

MODEL CALCULATIONS:

Losses in each transformer =
$$\frac{w_i + w_c}{2}$$
 % η combined = $\frac{VI_1}{VI_1 + w_i + w_c}$ x 100

Efficiency of each transformer (%
$$\eta$$
)= $\frac{VI_1}{VI_1 + \frac{w_i}{2} + \frac{w_c}{2}} \times 100$

MODEL GRAPH:

i) Output power Vs Efficiency

PRECAUTIONS:

- 1. Connections must be made tight
- 2. Before making or breaking the circuit, supply must be switched off

RESULT:

VIVA QUESTIONS:

- 1. What for this test is really intended?
- 2. Why to conduct the test on identical transformers?
- 3. What happens if the rated values of voltage and frequency of supply vary?
- 4. What are the advantages and disadvantages of this test?
- 5. Can you perform this test on 3ϕ star/ delta transformers?
- 6. What is all-day efficiency?