13.SCHERING'S BRIDGE

Objective:

To determine the unknown value of capacitance using schering's bridge.

Apparatus:

Software: Lab view software.

Hardware:	Name of the apparatus	Quantity	
	Bread board	1 No	
	Resistors	2 No	
	Variable Resistor	1 No	
	Capacitors	3No	
	Digital Multimeter	1 No	

Theory:

Schering bridge is one of the most important of the a.c. bridge. It is extensively used in measurement of capacitance.

At balance, $\{r_1+1/(j\omega C_1)\}\{R_4/(1+j\omega C_4R_4)\} = R_3/(j\omega C_2)$

 $\{r_1+1/(j\omega C_1)\}\ R_4=R_3/(j\omega C_2)*\{(1+j\omega C_4R_4)\}$

$$r_1R_4 - \{(jR_4)/(\omega C_1)\} = \{(-jR_3)/(\omega C_2)\} + \{(R_3R_4C_4)/(C_2)\}$$

Equating real and imaginary terms,

$$r_1 = R_3C_4/C_2$$
 and $C_1 = C_2R_4/R_3$

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Select any value of C1.
- 3. Connect the multimeter between ground and output of imbalance amplifier.
- 4. Vary R_4 and C_{4} , from minimum position, in clockwise direction.
- 5. If the selection of C₁ is correct the balance point can be obtained at minimum position.

- 6. If that is not the case, select another C_1 .
- 7. Calculate the Capacitance by substituting known values.

Observation:

C ₄	C ₁	C ₂	R ₃	R ₄

Front Panel in Labview:

Result:

Hence the balanced condition of schering bridge is obtained and unknown value of capacitance is found.