Page 1 of 6

DESIGN FOR SHEAR

Max. Shear due to loads, $V_u \le$ Design Shear Capacity, ϕV_n

Where $\phi = 0.75$

Design Shear Capacity, ϕV_n = [Design Shear strength of concrete, ϕV_c + Design Shear strength of reinforcement, ϕV_s]

 $\phi V_n = \phi V_c + \phi V_s$

Therefore, $V_u \leq [\phi V_c + \phi V_s]$

Shear force that concrete can resist without web reinforcement , V_{c}

(ACI Eq. 11.3) $V_c = 2 \sqrt{f_c'(b_w \times d)}$

where $f_{c}{}^{\prime}$ is in psi; $\,\,b_{w}$ and d are in inches

 $V_s = A_v \times f_y \times n$

 $\Rightarrow V_s = A_v x f_y x d/s \qquad (ACI Eq.11-15)$

 \Rightarrow s = A_v x f_y x d / V_s

where $A_v = cross-sectional$ area of each stirrup has crossed the crack

Page 3 of 6

Summary (Vertical Stirrup or Web Reinforcement Design)

- 1. Draw Shear, V_u Diagram (Fig. 5)
- 2. Calculate V_u at a distance d from the face of support
- 3. On the Vu diagram, identify locations where (1) Shear Reinforcement required, (2) where shear reinforcement not required, (3) where shear carried by stirrups, φV_s , and (4) where minimum shear reinforcement required (Shear carried by concrete, φV_c). [Note: SEE Fig. 5]
- 4. Calculate $\varphi V_c = 2 \lambda \varphi \sqrt{f_c'}$ (b_w x d), where

 φ = 0.75; λ = 1 for normal weight concrete; 0.85 for sand-lightweight concrete; 0.75 for all lightweight concrete.

5. Calculate $\phi V_s = [V_u - \phi V_c]$

<u>Check:</u> If $8\phi\sqrt{f_c'}$. $b_w d < [\phi V_s]$, then SECTION SHOULD BE ENLARGED [STOP AT THIS STEP]

6. No Stirrups are needed if $V_u < 0.5 \phi V_c$

DESIGN STIRRUPS

7. Determine required spacing of vertical U stirrups based on ϕV_s

Calculate theoretical stirrup spacing, $S = \phi A_v x f_v x d / [V_u - \phi V_c]$

S must satisfy

$$\label{eq:second} \begin{split} S \leq d/2 \leq 24 \text{ inch} \\ \text{If } [V_u \text{ - } \phi V_c] \text{ > } 4 \phi \sqrt{f_c}\text{ '}\text{ . } b_w \text{ d Then } S \leq d/4 \end{split}$$

8. Determine spacing of vertical U stirrups based on minimum shear reinforcement.

S is smaller of the two:

$$\begin{split} S &= A_v \; f_y \, / [50 \; b_w] \\ S &= A_v \; f_y \, / [\; 0.75 \sqrt{f_c'} \; . \; b_w] \\ S \; must \; satisfy \\ S &\leq d/2 \leq 24 \; inch \end{split}$$

- 9. Minimum practical stirrup spacing is 3 to 4 inches.
- 10. Draw the beam and show the shear reinforcements and spacing.