Q1. Vus/d depends on

- a) Asv
- b) spacing of shear reinforcement
- c) grade of steel
- d) all of these.

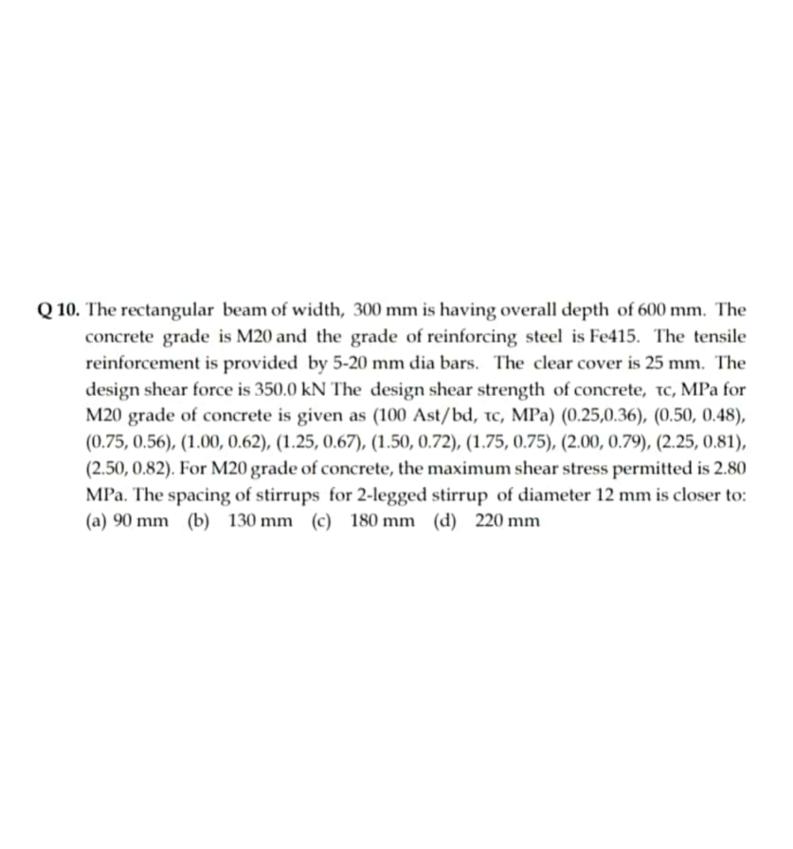
The rectangular beam of width, 300 mm is having overall depth of 600 mm. The
concrete grade is M20 and the grade of reinforcing steel is Fe415. The tensile
reinforcement is provided by 5-20 mm dia bars. The clear cover is 25 mm. The
design shear strength of concrete, τ_c , MPa for M20 grade of concrete is given as
(100 Ast/bd, τc, MPa) (0.25,0.36), (0.50, 0.48), (0.75, 0.56), (1.00, 0.62), (1.25, 0.67),
(1.50, 0.72), (1.75, 0.75), (2.00, 0.79), (2.25, 0.81), (2.50, 0.82) As per limit state, the
critical shear capacity of beam is equal to :
(a) 76.582 kN (b) 102.109 kN (c) 127.636 kN (d) 153.164 kN
()

Q 3.	A rectangular beam of width 300mm and overall depth 450mm is subjected to a
	factored shear of 350 KN. The tension side is provided with 4- 20mm dia bars.
	Assuming M25 grade of concrete, clear cover as 25mm and Fe415 steel, comment
	on the shear design of the beam. The design shear strength $$ of concrete, τ_c , MPa
	for M25 grade of concrete is given as (100 Ast ,τc, MPa) (0.25,0.36), (0.50, 0.49),
	(0.75, 0.57), (1.00, 0.64), (1.25, 0.70), (1.50, 0.74), (1.75, 0.78), (2.00, 0.82), (2.25, 0.85),
	(2.50, 0.88).

- (a) Design Shear reinforcement is needed.
- (b) Minimum shear reinforcement is needed
- (c) No shear reinforcement is needed
- (d) None of the above.

- **Q 4.** A rectangular beam of width 300mm and overall depth 450mm is provided with 20mm dia. Fe 415 bars on the tension side with a clear cover of 25mm. The beam is made with concrete having a $\tau_{c,max}$ = 3.1 MPa. For the reinforcement provided and the grade of concrete used, it may be assumed that the τ_c = 0.80 MPa. The design shear in beam B1 is 350 KN and in beam B2 is 450 KN. Considering the provisions of IS: 456-2000, which of the following is true?
 - a) Shear reinforcement should be designed for 250 kN for beam B1 and the section for beam B2 should be revised.
 - b) Nominal shear reinforcement is required for beam B1 and the shear reinforcement should be designed for 350 kN for beam B2.
 - c) Shear reinforcement should be designed for 250 kN for beam B1 and the shear reinforcement should be designed for 350 kN for beam B2.
 - d) The sections for both beam B1 and B2 should be revised.

Q 5.	The rectangular b	eam of width, 300	mm is having overa	ll depth of 600 mm	. The
	concrete grade is	M20 and the grad	e of reinforcing ste	el is Fe415. The te	ensile
	reinforcement is p	provided by 5-20 m	m dia bars. The c	ear cover is 25 mm.	. The
	design shear force	is 500.0 kN The de	sign shear strength	of concrete, τc, MI	Pa for
	M20 grade of cor	ncrete is given as (1	00 Ast/bd ,τ _c , MPa	(0.25,0.36), (0.50,	0.48),
	(0.75, 0.56), (1.00,	0.62), (1.25, 0.67), (1	.50, 0.72), (1.75, 0.75), (2.00, 0.79), (2.25,	0.81),
	(2.50, 0.82). For M20 grade of concrete, the maximum shear stress permitted is 2.80				
	MPa. The shear st	ress, τ_v is equal to		7	
	(a) 4.42 MPa	(b) 3.69 MPa	(c) 2.95 MPa	(d) 5.16 MPa	
	. 9	5	91.0	5 6	


Q 6.	The rectangular beam of width, 300 mm is having overall depth of 600 mm. The
	concrete grade is M20 and the grade of reinforcing steel is Fe415. The tensile
	reinforcement is provided by 5-20 mm dia bars. The clear cover is 25 mm. The
	design shear force is 500 kN The design shear strength of concrete, τc, MPa for
	M20 grade of concrete is given as (100 Ast/bd ,τc, MPa) (0.25,0.36), (0.50, 0.48),
	(0.75, 0.56), (1.00, 0.62), (1.25, 0.67), (1.50, 0.72), (1.75, 0.75), (2.00, 0.79), (2.25, 0.81),
	(2.50, 0.82). For M20 grade of concrete, the maximum shear stress permitted is 2.80
	MPa. The spacing of stirrups for 2-legged stirrup of diameter 12 mm is closer to:
	(a) 100 mm (b) 200 mm (c) 300 mm (d) Increase depth of beam

Q 7.	27. Calculate the effective width of a RCC T-beam section having the follow sectional properties: Distance between points of zero moments in the beam 3000mm; Width of flange = 1800mm; Thickness of flange = 150 mm; Breadth the web = 200 mm; Effective depth = 300 mm; Reinforcement = 4-20 mm diame Fe500 steel bars on tension side. Grade of concrete = M25.			
	(a) 1800mm	(b) 1400mm	(c) 1600mm	(d) 1200mm

Q 8.	A balanced reinforced concrete beam of M25 grade and width 300mm is having a factored limiting moment of 125 kNm. The grade of steel is of Fe415. The effective depth (to nearest multiple of 10) of the section is				
	(a) 450mm	(b) 350mm	(c) 300mm	(d) 250mm	

Q 9.	Types of	shear	failures can	be of
------	----------	-------	--------------	-------

- (a) Shear-tension
- (b) Shear-compression
- (c) Shear-bond
- (d) All of these.

