7 ## **Pressure Vessels** - 1. Introduction. - Classification of Pressure Vessels. - Stresses in a Thin Cylindrical Shell due to an Internal Pressure. - Circumferential or Hoop Stress. - Longitudinal Stress. - Change in Dimensions of a Thin Cylindrical Shell due to an Internal Pressure. - Thin Spherical Shells Subjected to an Internal Pressure. - Change in Dimensions of a Thin Spherical Shell due to an Internal Pressure. - Thick Cylindrical Shell Subjected to an Internal Pressure. - Compound Cylindrical Shells. - Stresses in Compound Cylindrical Shells. - Cylinder Heads and Cover Plates. #### 7.1 Introduction The pressure vessels (*i.e.* cylinders or tanks) are used to store fluids under pressure. The fluid being stored may undergo a change of state inside the pressure vessel as in case of steam boilers or it may combine with other reagents as in a chemical plant. The pressure vessels are designed with great care because rupture of a pressure vessel means an explosion which may cause loss of life and property. The material of pressure vessels may be brittle such as cast iron, or ductile such as mild steel. #### 7.2 Classification of Pressure Vessels The pressure vessels may be classified as follows: According to the dimensions. The pressure vessels, according to their dimensions, may be classified as thin shell or thick shell. If the wall thickness of the shell (t) is less than 1/10 of the diameter of the shell (d), then it is called a thin shell. On the other hand, if the wall thickness of the shell is greater than 1/10 of the diameter of the shell, then it is said to be a *thick shell*. Thin shells are used in boilers, tanks and pipes, whereas thick shells are used in high pressure cylinders, tanks, gun barrels etc. Note: Another criterion to classify the pressure vessels as thin shell or thick shell is the internal fluid pressure (p) and the allowable stress (G_p). If the internal fluid pressure (p) is less than 1/6 of the allowable stress, then it is called a *thin shell*. On the other hand, if the internal fluid pressure is greater than 1/6 of the allowable stress, then it is said to be a *thick shell*. Pressure vessels. #### According to the end construction. The pressure vessels, according to the end construction, may be classified as *open end* or *closed end*. A simple cylinder with a piston, such as cylinder of a press is an example of an open end vessel, whereas a tank is an example of a closed end vessel. In case of vessels having open ends, the circumferential or hoop stresses are induced by the fluid pressure, whereas in case of closed ends, longitudinal stresses in addition to circumferential stresses are induced. #### 7.3 Stresses in a Thin Cylindrical Shell due to an Internal Pressure The analysis of stresses induced in a thin cylindrical shell are made on the following assumptions: - The effect of curvature of the cylinder wall is neglected. - 2. The tensile stresses are uniformly distributed over the section of the walls. - 3. The effect of the restraining action of the heads at the end of the pressure vessel is neglected. (a) Failure of a cylindrical shell along the longitudinal section. (b) Failure of a cylindrical shell along the transverse section. Fig. 7.1, Failure of a cylindrical shell. When a thin cylindrical shell is subjected to an internal pressure, it is likely to fail in the following two ways: - It may fail along the longitudinal section (i.e. circumferentially) splitting the cylinder into two troughs, as shown in Fig. 7.1 (a). - It may fail across the transverse section (i.e. longitudinally) splitting the cylinder into two cylindrical shells, as shown in Fig. 7.1 (b). Thus the wall of a cylindrical shell subjected to an internal pressure has to withstand tensile stresses of the following two types: (a) Circumferential or hoop stress, and (b) Longitudinal stress. These stresses are discussed, in detail, in the following articles. #### 7.4 Circumferential or Hoop Stress Consider a thin cylindrical shell subjected to an internal pressure as shown in Fig. 7.2 (a) and (b). A tensile stress acting in a direction tangential to the circumference is called circumferential or hoop stress. In other words, it is a tensile stress on *longitudinal section (or on the cylindrical walls). (a) View of shell. (b) Cross-section of shell. Fig. 7.2. Circumferential or hoop stress. Let p = Intensity of internal pressure, d = Internal diameter of the cylindrical shell, I = Length of the cylindrical shell, t = Thickness of the cylindrical shell, and σ_{rl} = Circumferential or hoop stress for the material of the cylindrical shell. We know that the total force acting on a longitudinal section (i.e. along the diameter X-X) of the shell = Intensity of pressure $$\times$$ Projected area = $p \times d \times 1$...(i) and the total resisting force acting on the cylinder walls $$= \sigma_{t1} \times 2t \times 1$$...(: of two sections) ...(ii) From equations (i) and (ii), we have $$\sigma_n \times 2t \times l = p \times d \times l$$ or $\sigma_n = \frac{p \times d}{2t}$ or $t = \frac{p \times d}{2\sigma_n}$...(iii) The following points may be noted: In the design of engine cylinders, a value of 6 mm to 12 mm is added in equation (iii) to permit reboring after wear has taken place. Therefore $$t = \frac{p \times d}{2 \sigma_n} + 6 \text{ to } 12 \text{ mm}$$ $t=\frac{p\times d}{2\ \sigma_{t1}}+6\ \text{to 12 mm}$ 2. In constructing large pressure vessels like steam boilers, riveted joints or welded joints are used in joining together the ends of steel plates. In case of riveted joints, the wall thickness of the cylinder, $$t = \frac{p \times d}{2\sigma_{t1} \times \eta_I}$$ where η, = Efficiency of the longitudinal riveted joint. A section cut from a cylinder by a plane that contains the axis is called longitudinal section. - 3. In case of cylinders of ductile material, the value of circumferential stress (σ_{rl}) may be taken 0.8 times the yield point stress (σ_{y}) and for brittle materials, σ_{rl} may be taken as 0.125 times the ultimate tensile stress (σ_{y}). - 4. In designing steam boilers, the wall thickness calculated by the above equation may be compared with the minimum plate thickness as provided in boiler code as given in the following table. Table 7.1. Minimum plate thickness for steam boilers. | Boiler diameter | Minimum plate thickness (t) | |-----------------------------|-----------------------------| | 0.9 m or less | 6 mm | | Above 0.9 m and upto 1.35 m | 7.5 mm | | Above 1.35 m and upto 1.8 m | 9 mm | | Over 1.8 m | 12 mm | **Note**: If the calculated value of t is less than the code requirement, then the latter should be taken, otherwise the calculated value may be used. The boiler code also provides that the factor of safety shall be at least 5 and the steel of the plates and rivets shall have as a minimum the following ultimate stresses. Tensile stress, $\sigma_t = 385 \text{ MPa}$ Compressive stress, $\sigma_c = 665 \text{ MPa}$ Shear stress, $\tau = 308 \text{ MPa}$ #### 7.5 Longitudinal Stress Consider a closed thin cylindrical shell subjected to an internal pressure as shown in Fig. 7.3 (a) and (b). A tensile stress acting in the direction of the axis is called *longitudinal stress*. In other words, it is a tensile stress acting on the *transverse or circumferential section *Y-Y* (or on the ends of the vessel). Fig. 7.3. Longitudinal stress. Let $\sigma_{\varrho} = \text{Longitudinal stress}.$ In this case, the total force acting on the transverse section (i.e. along Y-Y) = Intensity of pressure × Cross-sectional area = $p \times \frac{\pi}{4} (d)^2$...(i) and total resisting force = $\sigma_{i2} \times \pi d.t$...(ii) A section cut from a cylinder by a plane at right angles to the axis of the cylinder is called transverse section. From equations (i) and (ii), we have $$\sigma_{i2} \times \pi \ d.t = p \times \frac{\pi}{4} (d)^2$$ $$\sigma_{i2} = \frac{p \times d}{4 \ t} \qquad \text{or} \qquad t = \frac{p \times d}{4 \ \sigma_{i2}}$$ If η_c is the efficiency of the circumferential joint, then $$t = \frac{p \times d}{4\sigma_{t2} \times \eta_c}$$ From above we see that the longitudinal stress is half of the circumferential or hoop stress. Therefore, the design of a pressure vessel must be based on the maximum stress *i.e.* hoop stress. Example 7.1. A thin cylindrical pressure vessel of 1.2 m diameter generates steam at a pressure of 1.75 N/mm². Find the minimum wall thickness, if (a) the longitudinal stress does not exceed 28 MPa; and (b) the circumferential stress does not exceed 42 MPa. Cylinders and tanks are used to store fluids under pressure. Solution. Given : d=1.2 m = 1200 mm ; p=1.75 N/mm² ; $\sigma_{i2}=28$ MPa = 28 N/mm² ; $\sigma_{i1}=42$ MPa = 42 N/mm² #### (a) When longitudinal stress (σ_e) does not exceed 28 MPa We know that minimum wall thickness, $$t = \frac{p \cdot d}{4 \sigma_{t2}} = \frac{1.75 \times 1200}{4 \times 28} = 18.75 \text{ say } 20 \text{ mm } \text{Ans.}$$ #### (b) When circumferential stress (\(\sigma_n\)) does not exceed 42 MPa We know that minimum wall thickness, $$t = \frac{p \cdot d}{2 \sigma_{t1}} = \frac{1.75 \times 1200}{2 \times 42} = 25 \text{ mm Ans.}$$ Example 7.2. A thin cylindrical pressure vessel of 500 mm diameter is subjected to an internal pressure of 2 N/mm². If the thickness of the vessel is 20 mm, find the hoop stress, longitudinal stress and the maximum shear stress. **Solution.** Given : d = 500 mm ; $p = 2 \text{ N/mm}^2$; t = 20 mm #### Hoop stress We know that hoop stress, $$\sigma_{\text{rl}} = \frac{p \cdot d}{2 t} = \frac{2 \times 500}{2 \times 20} = 25 \text{ N/mm}^2 = 25 \text{ MPa Ans.}$$ #### Longitudinal stress We know that longitudinal stress, $$\sigma_{i2} = \frac{p \cdot d}{4 t} = \frac{2 \times 500}{4 \times 20} = 12.5 \text{ N/mm}^2 = 12.5 \text{ MPa Ans.}$$ #### Maximum shear stress We know that according to maximum shear stress theory, the maximum shear
stress is one-half the algebraic difference of the maximum and minimum principal stress. Since the maximum principal stress is the hoop stress (σ_{l1}) and minimum principal stress is the longitudinal stress (σ_{l2}), therefore maximum shear stress, $$\tau_{max} = \frac{\sigma_{r1} - \sigma_{r2}}{2} = \frac{25 - 12.5}{2} = 6.25 \text{ N/mm}^2 = 6.25 \text{ MPa Ans.}$$ **Example 7.3.** An hydraulic control for a straight line motion, as shown in Fig. 7.4, utilises a Example 7.3. An hydraulic control for a straight line motion, as shown in Fig. 7.4, utilises a spherical pressure tank 'A' connected to a working cylinder B. The pump maintains a pressure of 3 N/mm² in the tank. If the diameter of pressure tank is 800 mm, determine its thickness for 100% efficiency of the joint. Assume the allowable tensile stress as 50 MPa. Fig. 7.4 - 2. Determine the diameter of a cast iron cylinder and its thickness to produce an operating force F = 25 kN. Assume (i) an allowance of 10 per cent of operating force F for friction in the cylinder and packing, and (ii) a pressure drop of 0.2 N/mm² between the tank and cylinder. Take safe stress for cast iron as 30 MPa. - Determine the power output of the cylinder, if the stroke of the piston is 450 mm and the time required for the working stroke is 5 seconds. - 4. Find the power of the motor, if the working cycle repeats after every 30 seconds and the efficiency of the hydraulic control is 80 percent and that of pump 60 percent. **Solution.** Given : $p = 3 \text{ N/mm}^2$; d = 800 mm; $\eta = 100\% = 1$; $\sigma_{t1} = 50 \text{ MPa} = 50 \text{ N/mm}^2$; $F = 25 \text{ kN} = 25 \times 10^3 \text{ N}$; $\sigma_{tc} = 30 \text{ MPa} = 30 \text{ N/mm}^2$: $\eta_H = 80\% = 0.8$; $\eta_P = 60\% = 0.6$ #### 1. Thickness of pressure tank We know that thickness of pressure tank, $$t = \frac{p \cdot d}{2\sigma_{tl} \cdot \eta} = \frac{3 \times 800}{2 \times 50 \times 1} = 24 \text{ mm Ans.}$$ #### 2. Diameter and thickness of cylinder Let D = Diameter of cylinder, and t_1 = Thickness of cylinder. Since an allowance of 10 per cent of operating force F is provided for friction in the cylinder and packing, therefore total force to be produced by friction, $$F_1 = F + \frac{10}{100} F = 1.1 F = 1.1 \times 25 \times 10^3 = 27500 N$$ Jacketed pressure vessel. We know that there is a pressure drop of $0.2\ N/mm^2$ between the tank and cylinder, therefore pressure in the cylinder, p_1 = Pressure in tank – Pressure drop = 3 – 0.2 = 2.8 N/mm² and total force produced by friction (F_1) , $$27\ 500 = \frac{\pi}{4} \times D^2 \times p_1 = 0.7854 \times D^2 \times 2.8 = 2.2\ D^2$$ $$D^2 = 27\ 500\ /\ 2.2 = 12\ 500 \quad \text{or} \qquad D = 112\ \text{mm} \ \text{Ans.}$$ We know that thickness of cylinder, $$t_1 = \frac{p_1 \cdot D}{2 \sigma_{tc}} = \frac{2.8 \times 112}{2 \times 30} = 5.2 \text{ mm Ans.}$$ #### 3. Power output of the cylinder We know that stroke of the piston $$= 450 \text{ mm} = 0.45 \text{ m}$$...(Given) and time required for working stroke :. Distance moved by the piston per second $$=\frac{0.45}{5}=0.09 \text{ m}$$ We know that work done per second $$= 27500 \times 0.09 = 2475 \text{ N-m}$$.. Power output of the cylinder #### 4. Power of the motor Since the working cycle repeats after every 30 seconds, therefore the power which is to be produced by the cylinder in 5 seconds is to be provided by the motor in 30 seconds. .. Power of the motor $$= \frac{Power \ of \ the \ cylinder}{\eta_H \times \eta_P} \times \frac{5}{30} = \frac{2.475}{0.8 \times 0.6} \times \frac{5}{30} = 0.86 \ kW \ \ \frac{\text{Ans.}}{\text{Ans.}}$$ ## 7.6 Change in Dimensions of a Thin Cylindrical Shell due to an Internal Pressure When a thin cylindrical shell is subjected to an internal pressure, there will be an increase in the diameter as well as the length of the shell. Let 1 = Length of the cylindrical shell, d = Diameter of the cylindrical shell, t = Thickness of the cylindrical shell, p = Intensity of internal pressure, E = Young's modulus for the material of the cylindrical shell, and μ = Poisson's ratio. The increase in diameter of the shell due to an internal pressure is given by, $$\delta d = \frac{p.d^2}{2 \, t.E} \left(1 - \frac{\mu}{2} \right)$$ The increase in length of the shell due to an internal pressure is given by, $$\delta I = \frac{p.d.I}{2 \ t.E} \left(\frac{1}{2} - \mu \right)$$ It may be noted that the increase in diameter and length of the shell will also increase its volume. The increase in volume of the shell due to an internal pressure is given by $$\delta V$$ = Final volume – Original volume = $\frac{\pi}{4} (d + \delta d)^2 (l + \delta l) - \frac{\pi}{4} \times d^2 . l$ $$= \frac{\pi}{4} (d^2.\delta I + 2 d.l.\delta d) \qquad ... (Neglecting small quantities)$$ Example 7.4. Find the thickness for a tube of internal diameter 100 mm subjected to an internal pressure which is 5/8 of the value of the maximum permissible circumferential stress. Also find the increase in internal diameter of such a tube when the internal pressure is 90 N/mm². Take $E=205 \ kN/mm^2$ and $\mu=0.29$. Neglect longitudinal strain. **Solution.** Given: $p = 5/8 \times \sigma_{t1} = 0.625 \sigma_{t1}$; d = 100 mm; $p_1 = 90 \text{ N/mm}^2$; $E = 205 \text{ kN/mm}^2$ = $205 \times 10^3 \text{ N/mm}^2$; $\mu = 0.29$ #### Thickness of a tube We know that thickness of a tube, $$t = \frac{p \cdot d}{2 \sigma_n} = \frac{0.625 \sigma_n \times 100}{2 \sigma_n} = 31.25 \text{ mm Ans.}$$ We know that thickness of the vessel, $$t = \frac{p.d}{4 \sigma_t \cdot \eta} = \frac{1.5 \times 3000}{4 \times 90 \times 0.75} = 16.7 \text{ say } 18 \text{ mm } \text{Ans.}$$ ### 7.8 Change in Dimensions of a Thin Spherical Shell due to an Internal Pressure Consider a thin spherical shell subjected to an internal pressure as shown in Fig. 7.5. Lat d = Diameter of the spherical shell, t = Thickness of the spherical shell, p = Intensity of internal pressure, E =Young's modulus for the material of the spherical shell, and μ = Poisson's ratio. Increase in diameter of the spherical shell due to an internal pressure is given by, $$\delta d = \frac{p \cdot d^2}{4 \cdot LE} (1 - \mu) \qquad \dots (i)$$ and increase in volume of the spherical shell due to an internal pressure is given by, $$\delta V = \text{Final volume} - \text{Original volume} = \frac{\pi}{6} (d + \delta d)^3 - \frac{\pi}{6} \times d^3$$ $$= \frac{\pi}{6} (3 d^2 \times \delta d) \qquad \qquad \text{...(Neglecting higher terms)}$$ Substituting the value of δd from equation (i), we have $$\delta V = \frac{3 \pi d^2}{6} \left[\frac{p.d^2}{4 \ t.E} (1 - \mu) \right] = \frac{\pi p d^4}{8 \ t.E} (1 - \mu)$$ Example 7.6. A seamless spherical shell, 900 mm in diameter and 10 mm thick is being filled with a fluid under pressure until its volume increases by 150×10^3 mm³. Calculate the pressure exerted by the fluid on the shell, taking modulus of elasticity for the material of the shell as 200 kN/mm^2 and Poisson's ratio as 0.3. **Solution.** Given : d = 900 mm ; t = 10 mm ; $\delta V = 150 \times 10^3$ mm³ ; E = 200 kN/mm² = 200×10^3 N/mm² ; $\mu = 0.3$ Let p = Pressure exerted by the fluid on the shell. We know that the increase in volume of the spherical shell (δV) , $$150 \times 10^{3} = \frac{\pi \ p \ d^{4}}{8 \ t \ E} \ (1 - \mu) = \frac{\pi \ p \ (900)^{4}}{8 \times 10 \times 200 \times 10^{3}} \ (1 - 0.3) = 90 \ 190 \ p$$ $$p = 150 \times 10^{3}/90 \ 190 = 1.66 \ \text{N/mm}^{2} \ \text{Ans.}$$ #### 7.9 Thick Cylindrical Shells Subjected to an Internal Pressure When a cylindrical shell of a pressure vessel, hydraulic cylinder, gunbarrel and a pipe is subjected to a very high internal fluid pressure, then the walls of the cylinder must be made extremely heavy or thick. In thin cylindrical shells, we have assumed that the tensile stresses are uniformly distributed over the section of the walls. But in the case of thick wall cylinders as shown in Fig. 7.6 (a), the stress over the section of the walls cannot be assumed to be uniformly distributed. They develop both tangential and radial stresses with values which are dependent upon the radius of the element under consideration. The distribution of stress in a thick cylindrical shell is shown in Fig. 7.6 (b) and (c). We see that the tangential stress is maximum at the inner surface and minimum at the outer surface of the shell. The radial stress is maximum at the inner surface and zero at the outer surface of the shell. In the design of thick cylindrical shells, the following equations are mostly used: Lame's equation; Birnie's equation; Clavarino's equation; and Barlow's equation. Barlow's equation. Clavarino's equation; Barlow's equation. - (a) Thick cylindrical shell. - (b) Tangential stress distribution. - (c) Radial stress distribution. Fig. 7.6. Stress distribution in thick cylindrical shells subjected to internal pressure. Let - r_o = Outer radius of cylindrical shell, - r_i = Inner radius of cylindrical shell, - $t = \text{Thickness of cylindrical shell} = r_o r_p$ - p = Intensity of internal pressure, - μ = Poisson's ratio, - $\sigma_r = \text{Tangential stress}, \text{ and}$ - $\sigma_r = \text{Radial stress.}$ All the above mentioned equations are now discussed, in detail, as below: Lame's equation. Assuming that the longitudinal fibres of the cylindrical shell are equally strained, Lame has shown that the tangential stress at any radius x is, $$\sigma_{t} = \frac{p_{t}(r_{t})^{2} - p_{o}(r_{o})^{2}}{(r_{o})^{2} - (r_{t})^{2}} + \frac{(r_{t})^{2}(r_{o})^{2}}{x^{2}} \left[\frac{p_{t} - p_{o}}{(r_{o})^{2} - (r_{t})^{2}} \right]$$ While designing a tanker, the pressure added by movement of the vehicle also should be considered. and radial stress at any radius x, $$\sigma_r = \frac{p_l(r_l)^2 - p_o(r_o)^2}{(r_o)^2 - (r_l)^2} - \frac{(r_l)^2(r_o)^2}{x^2} \left[\frac{p_l - p_o}{(r_o)^2 - (r_l)^2} \right]$$ Since we are concerned with the
internal pressure ($p_j = p$) only, therefore substituting the value of external pressure, $p_o = 0$. :. Tangential stress at any radius x, $$\sigma_{t} = \frac{p(r_{t})^{2}}{(r_{0})^{2} - (r_{t})^{2}} \left[1 + \frac{(r_{0})^{2}}{x^{2}} \right] \dots (i)$$ and radial stress at any radius x $$\sigma_r = \frac{p(r_i)^2}{(r_o)^2 - (r_i)^2} \left[1 - \frac{(r_o)^2}{x^2} \right] \dots (ii)$$ We see that the tangential stress is always a tensile stress whereas the radial stress is a compressive stress. We know that the tangential stress is maximum at the inner surface of the shell (*i.e.* when $x = r_0$) and it is minimum at the outer surface of the shell (*i.e.* when $x = r_0$). Substituting the value of $x = r_0$ and $x = r_0$ in equation (i), we find that the *maximum tangential stress at the inner surface of the shell, $$\sigma_{t(max)} = \frac{p[(r_o)^2 + (r_i)^2]}{(r_o)^2 - (r_i)^2}$$ and minimum tangential stress at the outer surface of the shell, $$\sigma_{t(min)} = \frac{2 p (r_i)^2}{(r_o)^2 - (r_i)^2}$$ We also know that the radial stress is maximum at the inner surface of the shell and zero at the outer surface of the shell. Substituting the value of $x = r_i$ and $x = r_o$ in equation (ii), we find that maximum radial stress at the inner surface of the shell, $$\sigma_{r(max)} = -p$$ (compressive) and minimum radial stress at the outer surface of the shell, $$\sigma_{r(min)} = 0$$ In designing a thick cylindrical shell of brittle material (e.g. cast iron, hard steel and cast aluminium) with closed or open ends and in accordance with the maximum normal stress theory failure, the tangential stress induced in the cylinder wall, $$\sigma_t = \sigma_{t(max)} = \frac{p[(r_o)^2 + (r_i)^2]}{(r_o)^2 - (r_i)^2}$$ Since $r_o = r_i + t$, therefore substituting this value of r_o in the above expression, we get $$\sigma_{t} = \frac{p \left[(r_{i} + t)^{2} + (r_{i})^{2} \right]}{(r_{i} + t)^{2} - (r_{i})^{2}}$$ $$\sigma_{t} (r_{i} + t)^{2} - \sigma_{t} (r_{i})^{2} = p (r_{i} + t)^{2} + p (r_{i})^{2}$$ $$(r_{i} + t)^{2} (\sigma_{i} - p) = (r_{i})^{2} (\sigma_{t} + p)$$ $$\frac{(r_{i} + t)^{2}}{(r_{i})^{2}} = \frac{\sigma_{t} + p}{\sigma_{t} - p}$$ ^{*} The maximum tangential stress is always greater than the internal pressure acting on the shell. $$\frac{r_{t}+t}{r_{t}} = \sqrt{\frac{\sigma_{t}+p}{\sigma_{t}-p}} \quad \text{or} \quad 1+\frac{t}{r_{t}} = \sqrt{\frac{\sigma_{t}+p}{\sigma_{t}-p}}$$ $$\therefore \quad \frac{t}{r_{t}} = \sqrt{\frac{\sigma_{t}+p}{\sigma_{t}-p}} - 1 \quad \text{or} \quad t = r_{t} \left[\sqrt{\frac{\sigma_{t}+p}{\sigma_{t}-p}} - 1 \right] \quad \dots \text{(iii)}$$ The value of σ_t for brittle materials may be taken as 0.125 times the ultimate tensile strength (σ_t) . We have discussed above the design of a thick cylindrical shell of brittle materials. In case of cylinders made of ductile material, Lame's equation is modified according to maximum shear stress theory. According to this theory, the maximum shear stress at any point in a strained body is equal to one-half the algebraic difference of the maximum and minimum principal stresses at that point. We know that for a thick cylindrical shell, Maximum principal stress at the inner surface, $$\sigma_{t \text{ (max)}} = \frac{p [(r_o)^2 + (r_l)^2]}{(r_o)^2 - (r_l)^2}$$ and minimum principal stress at the outer surface, $$\sigma_{t(min)} = -p$$.. Maximum shear stress, or $$\tau = \tau_{max} = \frac{\sigma_{t(max)} - \sigma_{t(min)}}{2} = \frac{\frac{p[(r_o)^2 + (r_i)^2]}{(r_o)^2 - (r_i)^2} - (-p)}{2}$$ $$= \frac{p[(r_o)^2 + (r_i)^2] + p[(r_o)^2 - (r_i)^2]}{2[(r_o)^2 - (r_i)^2]} = \frac{2p(r_o)^2}{2[(r_o)^2 - (r_i)^2]}$$ $$= \frac{p(r_i + t)^2}{(r_i + t)^2 - (r_i)^2} \qquad ... (\because r_o = r_i + t)$$ $$\tau(r_i + t)^2 - \tau(r_i)^2 = p(r_i + t)^2$$ $$(r_i + t)^2 (\tau - p) = \tau(r_i)^2$$ $$\frac{(r_i + t)^2}{(r_i)^2} = \frac{\tau}{\tau - p}$$ $$\frac{r_i + t}{r_i} = \sqrt{\frac{\tau}{\tau - p}} \qquad \text{or} \qquad 1 + \frac{t}{r_i} = \sqrt{\frac{\tau}{\tau - p}}$$ $$\therefore \qquad \frac{t}{r_i} = \sqrt{\frac{\tau}{\tau - p}} - 1 \qquad \text{or} \qquad t = r_i \left[\sqrt{\frac{\tau}{\tau - p}} - 1\right] \qquad ... (iv)$$ The value of shear stress (τ) is usually taken as one-half the tensile stress (σ_t) . Therefore the above expression may be written as $$t = r_t \left[\sqrt{\frac{\sigma_t}{\sigma_t - 2p}} - 1 \right] \qquad \dots (v)$$ From the above expression, we see that if the internal pressure (p) is equal to or greater than the allowable working stress (σ_t or τ), then no thickness of the cylinder wall will prevent failure. Thus, it is impossible to design a cylinder to withstand fluid pressure greater than the allowable working stress for a given material. This difficulty is overcome by using compound cylinders (See Art. 7.10). #### Pressure Vessels = 237 2. Birnie's equation. In case of open-end cylinders (such as pump cylinders, rams, gun barrels etc.) made of ductile material (i.e. low carbon steel, brass, bronze, and aluminium alloys), the allowable stresses cannot be determined by means of maximum-stress theory of failure. In such cases, the maximum-strain theory is used. According to this theory, the failure occurs when the strain reaches a limiting value and Birnie's equation for the wall thickness of a cylinder is $$t = r_t \left[\sqrt{\frac{\sigma_t + (1 - \mu) p}{\sigma_t - (1 + \mu) p}} - 1 \right]$$ The value of σ_t may be taken as 0.8 times the yield point stress (σ_s) . #### 3. Clavarino's equation. This equation is also based on the maximum-strain theory of failure, but it is applied to closed-end cylinders (or cylinders fitted with heads) made of ductile material. According to this equation, the thickness of a cylinder, Oil is frequently transported by ships called tankers. The larger tankers, such as this Acroo Alaska oil transporter, are known as supertankers. They can be hundreds of metres long. $$t = r_t \left[\sqrt{\frac{\sigma_t + (1 - 2\mu) \ p}{\sigma_t - (1 + \mu) \ p}} - 1 \right]$$ In this case also, the value of σ , may be taken as 0.8 σ . Barlow's equation. This equation is generally used for high pressure oil and gas pipes. According to this equation, the thickness of a cylinder, $$t = p.r_o / \sigma_t$$ For ductile materials, σ_t = 0.8 σ_y and for brittle materials σ_t = 0.125 σ_u , where σ_u is the ultimate stress. Example 7.7. A cast iron cylinder of internal diameter 200 mm and thickness 50 mm is subjected to a pressure of 5 N/mm². Calculate the tangential and radial stresses at the inner, middle (radius = 125 mm) and outer surfaces. **Solution.** Given: $d_i = 200 \text{ mm} \text{ or } r_i = 100 \text{ mm}$; t = 50 mm; $p = 5 \text{ N/mm}^2$ We know that outer radius of the cylinder, $$r_o = r_I + t = 100 + 50 = 150 \text{ mm}$$ #### Tangential stresses at the inner, middle and outer surfaces We know that the tangential stress at any radius x, $$\sigma_t = \frac{p(r_t)^2}{(r_o)^2 - (r_t)^2} \left[1 + \frac{(r_o)^2}{x^2} \right]$$ \therefore Tangential stress at the inner surface (i.e. when $x = r_i = 100 \text{ mm}$), $$\sigma_{f(inner)} = \frac{p[(r_o)^2 + (r_f)^2]}{(r_o)^2 - (r_f)^2} = \frac{5[(150)^2 + (100)^2]}{(150)^2 - (100)^2} = 13 \text{ N/mm}^2 = 13 \text{ MPa Ans.}$$ Tangential stress at the middle surface (i.e. when x = 125 mm), $$\sigma_{\text{t(middle)}} = \frac{5 (100)^2}{(150)^2 - (100)^2} \left[1 + \frac{(150)^2}{(125)^2} \right] = 9.76 \text{ N/mm}^2 = 9.76 \text{ MPa Ans.}$$ and tangential stress at the outer surface (i.e. when $x = r_0 = 150$ mm), $$\sigma_{t(outer)} = \frac{2 p (r_i)^2}{(r_o)^2 - (r_i)^2} = \frac{2 \times 5 (100)^2}{(150)^2 - (100)^2} = 8 \text{ N/mm}^2 = 8 \text{ MPa Ans.}$$ #### Radial stresses at the inner, middle and outer surfaces We know that the radial stress at any radius x, $$\sigma_r = \frac{p(r_0)^2}{(r_0)^2 - (r_0)^2} \left[1 - \frac{(r_0)^2}{x^2} \right]$$:. Radial stress at the inner surface (i.e. when $x = r_i = 100 \text{ mm}$), $$\sigma_{r(inner)} = -p = -5 \text{ N/mm}^2 = 5 \text{ MPa (compressive)}$$ Ans. Radial stress at the middle surface (i.e. when x = 125 mm) $$\sigma_{r(middle)} = \frac{5 (100)^2}{(150)^2 - (100)^2} \left[1 - \frac{(150)^2}{(125)^2} \right] = -1.76 \text{ N/mm}^2 = -1.76 \text{ MPa}$$ = 1.76 MPa (compressive) Ans. and radial stress at the outer surface (i.e. when $x = r_0 = 150$ mm), $$\sigma_{r(outer)} = 0$$ Ans. Example 7.8. A hydraulic press has a maximum capacity of 1000 kN. The piston diameter is 250 mm. Calculate the wall thickness if the cylinder is made of material for which the permissible strength may be taken as 80 MPa. This material may be assumed as a brittle material. **Solution.** Given: $W = 1000 \text{ kN} = 1000 \times 10^3 \text{ N}$: d = 250 mm; $\sigma_c = 80 \text{ MPa} = 80 \text{ N/mm}^2$ First of all, let us find the pressure inside the cylinder (p). We know that load on the hydraulic press (W), ٠. Let Hydraulic Press $$1000 \times 10^3 = \frac{\pi}{4} \times d^2 \times p = \frac{\pi}{4} (250)^2 p = 49.1 \times 10^3 p$$ $p = 1000 \times 10^3 / 49.1 \times 10^3 = 20.37 \text{ N/mm}^2$ $r_f = \text{Inside radius of the cylinder} = d/2 = 125 \text{ mm}$ We know that wall thickness of the cylinder, $$t = r_i \left[\sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 \right] = 125 \left[\sqrt{\frac{80 + 20.37}{80 - 20.37}} - 1 \right] \text{ mm}$$ $$= 125 (1.297 - 1) = 37 \text{ mm Ans.}$$ Example 7.9. A closed-ended cast iron cylinder of 200 mm inside diameter is to carry an internal pressure of 10 N/mm² with a permissible stress of 18 MPa. Determine the wall thickness by means of Lame's and the maximum shear stress equations. What result would you use? Give reason for your conclusion. **Solution.** Given: $d_i = 200 \text{ mm}$ or $r_i = 100 \text{ mm}$; $p = 10 \text{ N/mm}^2$; $\sigma_i = 18 \text{ MPa} = 18 \text{ N/mm}^2$ According to Lame's equation, wall
thickness of a cylinder, $$t = r_i \left[\sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 \right] = 100 \left[\sqrt{\frac{80 + 10}{80 - 10}} - 1 \right] = 87 \text{ mm}$$ According to maximum shear stress equation, wall thickness of a cylinder, $$t = r_I \left[\sqrt{\frac{\tau}{\tau - p}} - 1 \right]$$ We have discussed in Art. 7.9 [equation (iv)], that the shear stress (τ) is usually taken one-half the tensile stress (σ_p). In the present case, $\tau = \sigma_t/2 = 18/2 = 9 \text{ N/mm}^2$. Since τ is less than the internal pressure ($p = 10 \text{ N/mm}^2$), therefore the expression under the square root will be negative. Thus no thickness can prevent failure of the cylinder. Hence it is impossible to design a cylinder to withstand fluid pressure greater than the allowable working stress for the given material. This difficulty is overcome by using compound cylinders as discussed in Art. 7.10. Thus, we shall use a cylinder of wall thickness, t = 87 mm Ans. Example 7.10. The cylinder of a portable hydraulic riveter is 220 mm in diameter. The pressure of the fluid is 14 N/mm² by gauge. Determine suitable thickness of the cylinder wall assuming that the maximum permissible tensile stress is not to exceed 105 MPa. **Solution.** Given: $d_i = 220 \text{ mm}$ or $r_i = 110 \text{ mm}$; $p = 14 \text{ N/mm}^2$; $\sigma_i = 105 \text{ MPa} = 105 \text{ N/mm}^2$ Since the pressure of the fluid is high, therefore thick cylinder equation is used. Assuming the material of the cylinder as steel, the thickness of the cylinder wall (f) may be obtained by using Birnie's equation. We know that $$t = T_{I} \left[\sqrt{\frac{\sigma_{t} + (1 - \mu) p}{\sigma_{t} - (1 + \mu) p} - 1} - 1 \right]$$ $$= 110 \left[\sqrt{\frac{105 + (1 - 0.3) 14}{105 - (1 + 0.3) 14} - 1} \right] = 16.5 \text{ mm Ans.}$$...(Taking Poisson's ratio for steel, $\mu = 0.3$) Example 7.11. The hydraulic cylinder 400 mm bore operates at a maximum pressure of 5 N/mm². The piston rod is connected to the load and the cylinder to the frame through hinged joints. Design: 1. cylinder, 2. piston rod, 3. hinge pin, and 4. flat end cover. The allowable tensile stress for cast steel cylinder and end cover is 80 MPa and for piston rod is 60 MPa. Draw the hydraulic cylinder with piston, piston rod, end cover and O-ring. Solution. Given : d_i = 400 mm or r_i = 200 mm ; p = 5 N/mm² ; σ_t = 80 MPa = 80 N/mm² ; σ_{tp} = 60 MPa = 60 N/mm² #### 1. Design of cylinder $d_o =$ Outer diameter of the cylinder. Let We know that thickness of cylinder, $$t = r_i \left[\sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 \right] = 200 \left[\sqrt{\frac{80 + 5}{80 - 5}} - 1 \right] \text{ mm}$$ = 200 (1.06 - 1) = 12 mm Ans. .. Outer diameter of the cylinder, $$d_o = d_1 + 2t = 400 + 2 \times 12 = 424 \text{ mm Ans.}$$ #### 2. Design of piston rod Let $d_p = \text{Diameter of the piston rod.}$ We know that the force acting on the piston rod, $$F = \frac{\pi}{4} (d_p)^2 p = \frac{\pi}{4} (400)^2 5 = 628 400 \text{ N}$$...(1) We also know that the force acting on the piston rod, $$F = \frac{\pi}{4} (d_p)^2 \sigma_{tp} = \frac{\pi}{4} (d_p)^2 60 = 47.13 (d_p)^2 N \qquad ...(ii)$$ From equations (i) and (ii), we have $$(d_p)^2 = 628\ 400/47.13 = 13\ 333.33$$ or $d_p = 115.5$ say 116 mm Ans. #### 3. Design of the hinge pin Let d_h = Diameter of the hinge pin of the piston rod. Since the load on the pin is equal to the force acting on the piston rod, and the hinge pin is in double shear, therefore $$F = 2 \times \frac{\pi}{4} (d_h)^2 \tau$$ $$628 \ 400 = 2 \times \frac{\pi}{4} (d_h)^2 \ 45 = 70.7 \ (d_h)^2 \qquad ... (Taking \tau = 45 \text{ N/mm}^2)$$ $$(d_h)^2 = 628 \ 400 \ / \ 70.7 = 8888.3 \quad \text{or} \quad d_h = 94.3 \text{ say } 95 \text{ mm Ans.}$$ When the cover is hinged to the cylinder, we can use two hinge pins only diametrically opposite to each other. Thus the diameter of the hinge pins for cover, $$d_{hc} = \frac{d_h}{2} = \frac{95}{2} = 47.5 \text{ mm Ans.}$$ Fig. 7.7 #### 4. Design of the flat end cover Let t_c = Thickness of the end cover. We know that force on the end cover, $$F = d_t \times t_c \times \sigma_t$$ $628\ 400 = 400 \times t_c \times 80 = 32 \times 10^3\ t_c$ $t_c = 628\ 400\ /\ 32 \times 10^3 = 19.64\ \text{say } 20\ \text{mm}\ \text{Ans.}$ The hydraulic cylinder with piston, piston rod, end cover and O-ring is shown in Fig. 7.7. #### 7.10 Compound Cylindrical Shells According to Lame's equation, the thickness of a cylindrical shell is given by $$t = r_i \left(\sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 \right)$$ From this equation, we see that if the internal pressure (p) acting on the shell is equal to or greater than the allowable working stress (σ_i) for the material of the shell, then no thickness of the shell will prevent failure. Thus it is impossible to design a cylinder to withstand internal pressure equal to or greater than the allowable working stress. This difficulty is overcome by inducing an initial compressive stress on the wall of the cylindrical shell. This may be done by the following two methods: - 1. By using compound cylindrical shells, and - 2. By using the theory of plasticity. In a compound cylindrical shell, as shown in Fig. 7.8, the outer cylinder (having inside diameter smaller than the Fig. 7.8. Compound cylindrical shell. outside diameter of the inner cylinder) is shrunk fit over the inner cylinder by heating and cooling. On cooling, the contact pressure is developed at the junction of the two cylinders, which induces compressive tangential stress in the material of the inner cylinder and tensile tangential stress in the material of the outer cylinder. When the cylinder is loaded, the compressive stresses are first relieved and then tensile stresses are induced. Thus, a compound cylinder is effective in resisting higher internal pressure than a single cylinder with the same overall dimensions. The principle of compound cylinder is used in the design of gun tubes. In the theory of plasticity, a temporary high internal pressure is applied till the plastic stage is reached near the inside of the cylinder wall. This results in a residual compressive stress upon the removal of the internal pressure, thereby making the cylinder more effective to withstand a higher internal pressure. #### 7.11 Stresses in Compound Cylindrical Shells Fig. 7.9 (a) shows a compound cylindrical shell assembled with a shrink fit. We have discussed in the previous article that when the outer cylinder is shrunk fit over the inner cylinder, a contact pressure (p) is developed at junction of the two cylinders (i.e. at radius r_2) as shown in Fig. 7.9 (b) and (c). The stresses resulting from this pressure may be easily determined by using Lame's equation. According to this equation (See Art. 7.9), the tangential stress at any radius x is $$\sigma_{t} = \frac{p_{i} (r_{i})^{2} - p_{o} (r_{o})^{2}}{(r_{o})^{2} - (r_{i})^{2}} + \frac{(r_{i})^{2} (r_{o})^{2}}{x^{2}} \left[\frac{p_{i} - p_{o}}{(r_{o})^{2} - (r_{i})^{2}} \right] \dots (i)$$ and radial stress at any radius x, $$\sigma_{r} = \frac{p_{l}(r_{l})^{2} - p_{o}(r_{o})^{2}}{(r_{o})^{2} - (r_{l})^{2}} - \frac{(r_{l})^{2}(r_{o})^{2}}{x^{2}} \left[\frac{p_{l} - p_{o}}{(r_{o})^{2} - (r_{l})^{2}} \right] \dots (ii)$$ Considering the external pressure only, $$\sigma_{t} = \frac{-p_{o}(r_{o})^{2}}{(r_{o})^{2} - (r_{i})^{2}} \left[1 + \frac{(r_{i})^{2}}{x^{2}} \right] \dots (iii)$$...[Substituting $p_i = 0$ in equation (1)] and $$\sigma_r = \frac{-p_0 (r_0)^2}{(r_0)^2 - (r_1)^2} \left[1 - \frac{(r_1)^2}{x^2} \right] \dots (iv)$$ - (a) Compound cylinder. - (b) Inner cylinder. - (c) Outer cylinder. - (d) Tangential stress distribution due to shrinkage fitting and internal fluid pressure. - p_i p e'' e'' r₁ a c' - (e) Resultant tangential stress distribution across a compound cylindrical shell. Fig. 7.9. Stresses in compound cylindrical shells. Considering the internal pressure only, $$\sigma_{t} = \frac{p_{t}(r_{t})^{2}}{(r_{o})^{2} - (r_{t})^{2}} \left[1 + \frac{(r_{o})^{2}}{x^{2}} \right] \dots (v)$$...[Substituting $p_o = 0$ in equation (1)] and $$\sigma_r = \frac{p_t(r_t)^2}{(r_o)^2 - (r_t)^2} \left[1 - \frac{(r_o)^2}{x^2} \right] \dots (vi)$$ Since the inner cylinder is subjected to an external pressure (p) caused by the shrink fit and the outer cylinder is subjected to internal pressure (p), therefore from equation (iii), we find that the tangential stress at the inner surface of the inner cylinder, $$\sigma_{r1} = \frac{-p(r_2)^2}{(r_2)^2 - (r_1)^2} \left[1 + \frac{(r_1)^2}{(r_1)^2} \right] = \frac{-2p(r_2)^2}{(r_2)^2 - (r_1)^2} \text{ (compressive)} \dots (vii)$$... [Substituting $p_1 = p_1 x = r_1, r_2 = r_2$ and $r_2 = r_1$] This stress is compressive and is shown by ab in Fig. 7.9 (b). Radial stress at the inner surface of the inner cylinder, $$\sigma_{r1} = \frac{-p (r_2)^2}{(r_2)^2 - (r_1)^2} \left[1 - \frac{(r_1)^2}{(r_1)^2} \right] = 0 \qquad ... [From equation (iv)]$$ Similarly from equation (iii), we find that tangential stress at the outer surface of the inner cylinder, $$\sigma_{i2} = \frac{-p(r_2)^2}{(r_2)^2 - (r_1)^2} \left[1 + \frac{(r_1)^2}{(r_2)^2} \right] = \frac{-p[(r_2)^2 + (r_1)^2]}{(r_2)^2 - (r_1)^2} \text{ (compressive) } \dots \text{(viii)}$$...[Substituting $p_0 = p$, $x = r_2$, $r_0 = r_2$ and $r_1 = r_1$] This stress is compressive and is shown by cd in Fig. 7.9 (b). Radial stress at the outer surface of the inner cylinder, $$\sigma_{r2} = \frac{-p(r_2)^2}{(r_2)^2 - (r_1)^2} \left[1 - \frac{(r_1)^2}{(r_2)^2} \right] = -p$$ Submarines consist of an airtight compartment surrounded by ballast tanks. The submarine dives by filling these tanks with water or air. Its neutral buoyancy ensures that it neither floats nor sinks. Note: This picture is given as additional information and is not a direct example of the current chapter. Now let us consider the outer cylinder subjected to internal pressure (p). From equation
(v), we find that the tangential stress at the inner surface of the outer cylinder, $$\sigma_{\mathcal{B}} = \frac{p(r_2)^2}{(r_3)^2 - (r_2)^2} \left[1 + \frac{(r_3)^2}{(r_2)^2} \right] = \frac{p[(r_3)^2 + (r_2)^2]}{(r_3)^2 - (r_2)^2} \text{ (tensile)} \qquad ... (ix)$$... [Substituting $p_i = p_i$, $x = r_2$, $r_o = r_3$ and $r_i = r_2$] and is shown by coin Fig. 7.9 (c) This stress is tensile and is shown by ce in Fig. 7.9 (c). Radial stress at the inner surface of the outer cylinder, $$\sigma_{f3} = \frac{p(r_2)^2}{(r_3)^2 - (r_2)^2} \left[1 - \frac{(r_3)^2}{(r_2)^2} \right] = -p \qquad ...[From equation (vi)]$$ Similarly from equation (v), we find that the tangential stress at the outer surface of the outer cylinder, $$\sigma_{H} = \frac{p(r_2)^2}{(r_3)^2 - (r_2)^2} \left[1 + \frac{(r_3)^2}{(r_3)^2} \right] = \frac{2 p(r_2)^2}{(r_3)^2 - (r_2)^2} \text{ (tensile)} \qquad \dots (x)$$... [Substituting $p_i = p$, $x = r_3$, $r_o = r_3$ and $r_i = r_2$] This stress is tensile and is shown by fg in Fig. 7.9 (c). Radial stress at the outer surface of the outer cylinder, $$\sigma_{r4} = \frac{p(r_2)^2}{(r_3)^2 - (r_2)^2} \left[1 - \frac{(r_3)^2}{(r_3)^2} \right] = 0$$ The equations (vii) to (x) cannot be solved until the contact pressure (p) is known. In obtaining a shrink fit, the outside diameter of the inner cylinder is made larger than the inside diameter of the outer cylinder. This difference in diameters is called the **interference** and is the deformation which the two cylinders must experience. Since the diameters of the cylinders are usually known, therefore the deformation should be calculated to find the contact pressure. Submarine is akin a to pressure vessel. CAD and CAM were used to design and manufacture this French submarine. Let $\delta_o =$ Increase in inner radius of the outer cylinder, δ_i = Decrease in outer radius of the inner cylinder, E_o = Young's modulus for the material of the outer cylinder, E_i = Young's modulus for the material of the inner cylinder, and μ = Poisson's ratio. We know that the tangential strain in the outer cylinder at the inner radius (r_2) , $$\varepsilon_{to} = \frac{\text{Change in circumference}}{\text{Original circumference}} = \frac{2\pi (r_2 + \delta_o) - 2\pi r_2}{2\pi r_2} = \frac{\delta_o}{r_2} \qquad ... \text{(x1)}$$ Also the tangential strain in the outer cylinder at the inner radius (r_2) , $$\varepsilon_{to} = \frac{\sigma_{to}}{E_o} - \frac{\mu . \sigma_{ro}}{E_o} \qquad ...(xii)$$ We have discussed above that the tangential stress at the inner surface of the outer cylinder (or at the contact surfaces), $$\sigma_{to} = \sigma_{t3} = \frac{p[(r_3)^2 + (r_2)^2]}{(r_3)^2 - (r_2)^2}$$...[From equation (LX)] and radial stress at the inner surface of the outer cylinder (or at the contact surfaces), $$\sigma_{ro} = \sigma_{r3} = -p$$ Substituting the value of σ_{io} and σ_{io} in equation (xii), we get $$\varepsilon_{lo} = \frac{p \left[(r_3)^2 + (r_2)^2 \right]}{E_o \left[(r_3)^2 - (r_2)^2 \right]} + \frac{\mu \cdot p}{E_o} = \frac{p}{E_o} \left[\frac{(r_3)^2 + (r_2)^2}{(r_3)^2 - (r_2)^2} + \mu \right] \qquad \dots (xiii)$$ From equations (xi) and (xiii), $$\delta_o = \frac{p.r_2}{E_o} \left[\frac{(r_3)^2 + (r_2)^2}{(r_3)^2 - (r_2)^2} + \mu \right] \dots (xiv)$$ Similarly, we may find that the decrease in the outer radius of the inner cylinder, $$\delta_{i} = \frac{-p.r_{2}}{E_{i}} \left[\frac{(r_{2})^{2} + (r_{1})^{2}}{(r_{2})^{2} - (r_{1})^{2}} - \mu \right] \dots (xv)$$.. Difference in radius, $$\delta_{r} = \delta_{o} - \delta_{i} = \frac{p.r_{2}}{E_{o}} \left[\frac{(r_{3})^{2} + (r_{2})^{2}}{(r_{3})^{2} - (r_{2})^{2}} + \mu \right] + \frac{p.r_{2}}{E_{i}} \left[\frac{(r_{2})^{2} + (r_{1})^{2}}{(r_{2})^{2} - (r_{1})^{2}} - \mu \right]$$ If both the cylinders are of the same material, then $E_o = E_i = E$. Thus the above expression may be written as $$\begin{split} \delta_{r} &= \frac{p.r_{2}}{E} \left[\frac{(r_{3})^{2} + (r_{2})^{2}}{(r_{3})^{2} - (r_{2})^{2}} + \frac{(r_{2})^{2} + (r_{1})^{2}}{(r_{2})^{2} - (r_{1})^{2}} \right] \\ &= \frac{p.r_{2}}{E} \left[\frac{\left[(r_{3})^{2} + (r_{2})^{2} \right] \left[(r_{2})^{2} - (r_{1})^{2} \right] + \left[(r_{2})^{2} + (r_{1})^{2} \right] \left[(r_{3})^{2} - (r_{2})^{2} \right]}{\left[(r_{3})^{2} - (r_{2})^{2} \right] \left[(r_{2})^{2} - (r_{1})^{2} \right]} \right] \\ &= \frac{p.r_{2}}{E} \left[\frac{2(r_{2})^{2} \left[(r_{3})^{2} - (r_{1})^{2} \right]}{\left[(r_{3})^{2} - (r_{2})^{2} \right] \left[(r_{2})^{2} - (r_{1})^{2} \right]} \right] \\ p &= \frac{E.\delta_{r}}{r_{2}} \left[\frac{\left[(r_{3})^{2} - (r_{2})^{2} \right] \left[(r_{2})^{2} - (r_{1})^{2} \right]}{2(r_{2})^{2} \left[(r_{3})^{2} - (r_{1})^{2} \right]} \right] \end{split}$$ or Substituting this value of p in equations (vii) to (x), we may obtain the tangential stresses at the various surfaces of the compound cylinder. Now let us consider the compound cylinder subjected to an internal fluid pressure (p_i). We have discussed above that when the compound cylinder is subjected to internal pressure (p_i), then the tangential stress at any radius (x) is given by $$\sigma_t = \frac{p_t (r_t)^2}{(r_o)^2 - (r_t)^2} \left[1 + \frac{(r_o)^2}{x^2} \right]$$:. Tangential stress at the inner surface of the inner cylinder, $$\sigma_{r5} = \frac{p_{t}(r_{1})^{2}}{(r_{3})^{2} - (r_{1})^{2}} \left[1 + \frac{(r_{3})^{2}}{(r_{1})^{2}} \right] = \frac{p_{t}[(r_{3})^{2} + (r_{1})^{2}]}{(r_{3})^{2} - (r_{1})^{2}} \text{ (tensile)}$$... [Substituting $x = r_{1}$, $r_{2} = r_{3}$ and $r_{3} = r_{3}$] This stress is tensile and is shown by ab' in Fig. 7.9 (d). Tangential stress at the outer surface of the inner cylinder or inner surface of the outer cylinder, $$\sigma_{\text{f6}} = \frac{p_{f}(r_{1})^{2}}{(r_{3})^{2} - (r_{1})^{2}} \left[1 + \frac{(r_{3})^{2}}{(r_{2})^{2}} \right] = \frac{p_{f}(r_{1})^{2}}{(r_{2})^{2}} \left[\frac{(r_{3})^{2} + (r_{2})^{2}}{(r_{3})^{2} - (r_{1})^{2}} \right] \text{ (tensile)}$$... [Substituting $x = r_2$, $r_0 = r_3$ and $r_i = r_1$] This stress is tensile and is shown by *ce* 'in Fig. 7.9 (*d*), and tangential stress at the outer surface of the outer cylinder, $$\sigma_{ii} = \frac{p_i (r_i)^2}{(r_3)^2 - (r_i)^2} \left[1 + \frac{(r_3)^2}{(r_3)^2} \right] = \frac{2 p_i (r_i)^2}{(r_3)^2 - (r_i)^2} \text{ (tensile)}$$...[Substituting $x = r_3$, $r_a = r_3$ and $r_i = r_1$] This stress is tensile and is shown by fg' in Fig. 7.9 (d). Now the resultant stress at the inner surface of the compound cylinder, $$\sigma_{tt} = \sigma_{t1} + \sigma_{t5}$$ or $ab' - ab$ This stress is tensile and is shown by ab" in Fig. 7.9 (e). Resultant stress at the outer surface of the inner cylinder $$= \sigma_{12} + \sigma_{16}$$ or $ce' - cd$ or cc' Resultant stress at the inner surface of the outer cylinder $$= \sigma_{i3} + \sigma_{i6}$$ or $ce + ce'$ or $c'e''$.. Total resultant stress at the mating or contact surface, $$\sigma_{tm} = \sigma_{t2} + \sigma_{t6} + \sigma_{t3} + \sigma_{t6}$$ This stress is tensile and is shown by ce" in Fig. 7.9 (e), and resultant stress at the outer surface of the outer cylinder, $$\sigma_{to} = \sigma_{tA} + \sigma_{t7}$$ or $fg + fg'$ This stress is tensile and is shown by fg" in Fig. 7.9 (e). **Example 7.12.** The hydraulic press, having a working pressure of water as 16 N/mm² and exerting a force of 80 kN is required to press materials upto a maximum size of 800 mm × 800 mm and 800 mm high, the stroke length is 80 mm. Design and draw the following parts of the press: 1. Design of ram; 2. Cylinder; 3. Pillars; and 4. Gland. **Solution.** Given: $p = 16 \text{ N/mm}^2$; $F = 80 \text{ kN} = 80 \times 10^3 \text{ N}$ The hydraulic press is shown in Fig. 7.10. #### 1. Design of ram Let d_r = Diameter of ram. We know that the maximum force to be exerted by the ram (F), $$80 \times 10^{3} = \frac{\pi}{4} (d_{p})^{2} p = \frac{\pi}{4} (d_{p})^{2} 16 = 12.57 (d_{p})^{2}$$ $$d_c = 80 \times 10^3 / 12.57 = 6364$$ or $d_c = 79.8$ say 80 mm Ans. In case the ram is made hollow in order to reduce its weight, then it can be designed as a thick cylinder subjected to external pressure. We have already discussed in Art. 7.11 that according to Lame's equation, maximum tangential stress (considering external pressure only) is #### Pressure Vessels = 247 $$\sigma_{t(max)} = \frac{-p_o(d_{ro})^2}{(d_{ro})^2 - (d_{rl})^2} \left[1 + \frac{(d_{rl})^2}{(d_{ro})^2} \right] = -p_o \left[\frac{(d_{ro})^2 + (d_{rl})^2}{(d_{ro})^2 - (d_{rl})^2} \right] \text{ (compressive)}$$ and maximum radial stress, $\sigma_{r(max)} = -p_o$ (compressive) where d_{ro} = Outer diameter of ram = d_r = 80 mm d_{ri} = Inner diameter of ram, and $p_o = \text{External pressure} = p = 16 \text{ N/mm}^2$...(Given) Now according to maximum shear stress theory for ductile materials, maximum shear stress is $$\tau_{max} = \frac{\sigma_{t(max)} - \sigma_{r(max)}}{2} = \frac{-p_o \left[\frac{(d_{ro})^2 + (d_{rl})^2}{(d_{ro})^2 - (d_{rl})^2} \right] - (-p_o)}{2}$$ $$= - P_{o} \left[\frac{(d_{rl})^{2}}{(d_{ro})^{2} - (d_{rl})^{2}} \right]$$ Top plate Supporting columns Sliding platform Gland U-leather packing Fig. 7.10. Hydraulic press. Cylinder Water in Since the maximum shear stress is one-half the maximum principal stress (which is compressive), therefore $$\sigma_c = 2 \tau_{max} = 2 p_o \left[\frac{(d_{rl})^2}{(d_{ro})^2 - (d_{rl})^2} \right]$$ Ram Base plate The ram is usually made of mild steel for which the compressive stress may be taken as 75 N/mm². Substituting this value of stress in the above expression, we get 2. Design of cylinder Let d_{ci} = Inner diameter of cylinder, and d_{co} = Outer diameter of cylinder. Assuming a clearance of 15 mm between the ram and the cylinder bore, therefore inner diameter of the cylinder, $$d_{cl} = d_{ro} + \text{Clearance} = 80 + 15 = 95 \text{ mm Ans.}$$ The cylinder is usually made of cast iron for which the
tensile stress may be taken as 30 N/mm². According to Lame's equation, we know that wall thickness of a cylinder, $$t = \frac{d_{cl}}{2} \left[\sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 \right] = \frac{95}{2} \left[\sqrt{\frac{30 + 16}{30 - 16}} - 1 \right] \text{ mm}$$ = 47.5 (1.81 - 1) = 38.5 say 40 mm In accordance with Bernoulli's principle, the fast flow of air creates low pressure above the paint tube, sucking paint upwards into the air steam. Note: This picture is given as additional information and is not a direct example of the current chapter. and outside diameter of the cylinder, $$d_{co} = d_{ci} + 2 t = 95 + 2 \times 40 = 175 \text{ mm Ans.}$$ #### 3. Design of pillars Let d_p = Diameter of the pillar. The function of the pillars is to support the top plate and to guide the sliding plate. When the material is being pressed, the pillars will be under direct tension. Let there are four pillars and the load is equally shared by these pillars. :. Load on each pillar $$= 80 \times 10^{3}/4 = 20 \times 10^{3} \text{ N}$$...(1) We know that load on each pillar $$= \frac{\pi}{4} (d_p)^2 \sigma_t = \frac{\pi}{4} (d_p)^2 75 = 58.9 (d_p)^2 \dots (ii)$$ From equations (i) and (ii), $$(d_p)^2 = 20 \times 10^3 / 58.9 = 340$$ or $d_p = 18.4 \text{ mm}$ From fine series of metric threads, let us adopt the threads on pillars as M 20×1.5 having major diameter as 20 mm and core diameter as 18.16 mm. Ans. #### 4. Design of gland The gland is shown in Fig 7.11. The width (w) of the U-leather packing for a ram is given empirically as 2 $\sqrt{d_r}$ to 2.5 $\sqrt{d_r}$, where d_r is the diameter (outer) of the ram in mm. Gland Let us take width of the packing as 2.2 $\sqrt{d_r}$. .. Width of packing, $w = 2.2 \sqrt{80} = 19.7 \text{ say } 20 \text{ mm Ans.}$ and outer diameter of gland, $$D_C = d_r + 2 \text{ } w = 80 + 2 \times 20 = 120 \text{ mm Ans.}$$ We know that total upward load on the gland = Area of gland exposed to fluid pressure × Fluid pressure $$= \pi (d_c + w) w.p = \pi (80 + 20) 20 \times 16 = 100 544 N$$ Let us assume that 8 studs equally spaced on the pitch circle of the gland flange are used for holding down the gland. If d_c is the core diameter of the stud and σ_c is the permissible tensile stress for the stud material, then Load on each stud. 12 568 = $$\frac{\pi}{4}$$ (d_c)² $\sigma_t = \frac{\pi}{4}$ (d_c)² 75 = 58.9 (d_c)² ... (Taking σ_t = 75 N/mm²) (d_c)² = 12 568 / 58.9 = 213.4 or d_c = 14.6 mm From fine series of metric threads, let us adopt the studs of size M 18 x 1.5 having major diameter as 18 mm and core diameter (d_{r}) as 16.16 mm. Ans. The other dimensions for the gland are taken as follows: Pitch circle diameter of the gland flange, P.C.D. = $$D_C + 3 d_c = 120 + 3 \times 16.16 = 168.48$$ or 168.5 mm Ans. Outer diameter of the gland flange, $$D_{\rm F} = D_{\rm G} + 6 d_{\rm c} = 120 + 6 \times 16.16 = 216.96$$ or 217 mm Ans. and thickness of the gland flange = $1.5 d_c = 1.5 \times 16.16 = 24.24$ or 24.5 mm Ans. A long oil tank. Example 7.13. A steel tube 240 mm external diameter is shrunk on another steel tube of 80 mm internal diameter. After shrinking, the diameter at the junction is 160 mm. Before shrinking, the difference of diameters at the junction was 0.08 mm. If the Young's modulus for steel is 200 GPa, find: 1. tangential stress at the outer surface of the inner tube; 2. tangential stress at the inner surface of the outer tube; and 3. radial stress at the junction. **Solution.** Given: $d_3 = 240 \text{ mm}$ or $r_3 = 120 \text{ mm}$; $d_1 = 80 \text{ mm}$ or $r_1 = 40 \text{ mm}$; $d_2 = 160 \text{ mm}$ or $r_2 = 80 \text{ mm}$; $\delta_d = 0.08 \text{ mm}$ or $\delta_r = 0.04 \text{ mm}$; $E = 200 \text{ GPa} = 200 \text{ kN/mm}^2 = 200 \times 10^3 \text{ N/mm}^2$ First of all, let us find the pressure developed at the junction. We know that the pressure developed at the junction, $$p = \frac{E\delta_r}{r_2} \left[\frac{\left[(r_3)^2 - (r_2)^2 \right] \left[(r_2)^2 - (r_1)^2 \right]}{2 (r_2)^2 \left[(r_3)^2 - (r_1)^2 \right]} \right]$$ $$= \frac{200 \times 10^3 \times 0.04}{80} \left[\frac{\left[(120)^2 - (80)^2 \right] \left[(80)^2 - (40)^2 \right]}{2 \times (80)^2 \left[(120)^2 - (40)^2 \right]} \right]$$ $$= 100 \times 0.234 = 23.4 \text{ N/mm}^2 \text{Ans.}$$ #### 1. Tangential stress at the outer surface of the inner tube We know that the tangential stress at the outer surface of the inner tube, $$\sigma_{tt} = \frac{-p[(r_2)^2 + (r_1)^2]}{(r_2)^2 - (r_1)^2} = \frac{-23.4 [(80)^2 + (40)^2]}{(80)^2 - (40)^2} = -39 \text{ N/mm}^2$$ = 39 MPa (compressive) Ans. #### 2. Tangential stress at the inner surface of the outer tube We know that the tangential stress at the inner surface of the outer tube, $$\sigma_{to} = \frac{-p[(r_3)^2 + (r_2)^2]}{(r_3)^2 - (r_2)^2} = \frac{23.4[(120)^2 + (80)^2]}{(120)^2 - (80)^2} = 60.84 \text{ N/mm}^2$$ #### 3. Radial stress at the junction We know that the radial stress at the junction, (i.e. at the inner radius of the outer tube), $$\sigma_m = -p = -23.4 \text{ N/mm}^2 = 23.4 \text{ MPa (compressive)}$$ Ans. **Example 7.14.** A shrink fit assembly, formed by shrinking one tube over another, is subjected to an internal pressure of 60 N/mm². Before the fluid is admitted, the internal and the external diameters of the assembly are 120 mm and 200 mm and the diameter at the junction is 160 mm. If after shrinking on, the contact pressure at the junction is 8 N/mm², determine using Lame's equations, the stresses at the inner, mating and outer surfaces of the assembly after the fluid has been admitted. **Solution.** Given: $p_1 = 60 \text{ N/mm}^2$; $d_1 = 120 \text{ mm}$ or $r_1 = 60 \text{ mm}$; $d_3 = 200 \text{ mm}$ or $r_3 = 100 \text{ mm}$; $d_2 = 160 \text{ mm}$ or $r_2 = 80 \text{ mm}$; $p = 8 \text{ N/mm}^2$ First of all, let us find out the stresses induced in the assembly due to contact pressure at the junction (p). We know that the tangential stress at the inner surface of the inner tube, $$\sigma_{t1} = \frac{-2 p (r_2)^2}{(r_2)^2 - (r_1)^2} = \frac{-2 \times 8 (80)^2}{(80)^2 - (60)^2} = -36.6 \text{ N/mm}^2$$ = 36.6 MPa (compressive) Tangential stress at the outer surface of the inner tube, $$\sigma_{IZ} = \frac{-p[(r_2)^2 + (r_1)^2]}{(r_2)^2 - (r_1)^2} = \frac{-8[(80)^2 + (60)^2]}{(80)^2 - (60)^2} = -28.6 \text{ N/mm}^2$$ = 28.6 MPa (compressive) Tangential stress at the inner surface of the outer tube, $$\sigma_{f3} = \frac{p \left[(r_3)^2 + (r_2)^2 \right]}{(r_3)^2 - (r_2)^2} = \frac{8 \left[(100)^2 + (80)^2 \right]}{(100)^2 - (80)^2} = 36.4 \text{ N/mm}^2$$ = 36.4 MPa (tensile) and tangential stress at the outer surface of the outer tube, $$\sigma_{t4} = \frac{2 p (r_2)^2}{(r_3)^2 - (r_2)^2} = \frac{2 \times 8 (80)^2}{(100)^2 - (80)^2} = 28.4 \text{ N/mm}^2$$ $$= 28.4 \text{ MPa (tensile)}$$ Now let us find out the stresses induced in the assembly due to internal fluid pressure (p_i) . We know that the tangential stress at the inner surface of the inner tube, $$\sigma_{65} = \frac{p_1[(r_3)^2 + (r_1)^2]}{(r_3)^2 - (r_1)^2} = \frac{60[(100)^2 + (60)^2]}{(100)^2 - (60)^2} = 127.5 \text{ N/mm}^2$$ = 127.5 MPa (tensile) Tangential stress at the outer surface of the inner tube or inner surface of the outer tube (i.e., mating surface), $$\sigma_{66} = \frac{p_{I}(r_{I})^{2}}{(r_{2})^{2}} \left[\frac{(r_{3})^{2} + (r_{2})^{2}}{(r_{3})^{2} - (r_{I})^{2}} \right] = \frac{60 (60)^{2}}{(80)^{2}} \left[\frac{(100)^{2} + (80)^{2}}{(100)^{2} - (60)^{2}} \right] = 86.5 \text{ N/mm}^{2}$$ $$= 86.5 \text{ MPa (tensile)}$$ and tangential stress at the outer surface of the outer tube, $$\sigma_{rr} = \frac{2 p_r (r_i)^2}{(r_3)^2 - (r_i)^2} = \frac{2 \times 60 (60)^2}{(100)^2 - (60)^2} = 67.5 \text{ N/mm}^2 = 67.5 \text{ MPa (tensile)}$$ We know that resultant stress at the inner surface of the assembly $$\sigma_{tt} = \sigma_{t1} + \sigma_{t5} = -36.6 + 127.5 = 90.9 \text{ N/mm}^2 = 90.9 \text{ MPa (tensile)}$$ Ans. Resultant stress at the outer surface of the inner tube = $$\sigma_{t2} + \sigma_{t6} = -28.6 + 86.5 = 57.9 \text{ N/mm}^2 = 57.9 \text{ MPa (tensile)}$$ Resultant stress at the inner surface of the outer tube $$= \sigma_{t3} + \sigma_{t6} = 36.4 + 86.5 = 122.9 \text{ N/mm}^2 = 122.9 \text{ MPa (tensile)}$$:. Total resultant stress at the mating surface of the assembly, $$\sigma_{im} = 57.9 + 122.9 = 180.8 \text{ N/mm}^2 = 180.8 \text{ MPa (tensile)}$$ Ans. and resultant stress at the outer surface of the assembly, $$\sigma_{to} = \sigma_{t4} + \sigma_{t7} = 28.4 + 67.5 = 95.9 \text{ N/mm}^2 = 95.9 \text{ MPa (tensile)}$$ Ans. #### 7.12 Cylinder Heads and Cover Plates The heads of cylindrical pressure vessels and the sides of rectangular or square tanks may have flat plates or slightly dished plates. The plates may either be cast integrally with the cylinder walls or fixed by means of bolts, rivets or welds. The design of flat plates forming the heads depend upon the following two factors: - (a) Type of connection between the head and the cylindrical wall, (i.e. freely supported or rigidly fixed); and - (b) Nature of loading (i.e. uniformly distributed or concentrated). Since the stress distribution in the cylinder heads and cover plates are of complex nature, therefore empirical relations based on the work of Grashof and Bach are used in the design of flat plates. Let us consider the following cases: This 2500-ton hydraulic press is used to forge machine parts a high temperature. Note: This picture is given as additional information and is not a direct example of the current chapter. Circular flat plate with uniformly distributed load. The thickness (t₁) of a plate with a diameter (d) supported at the circumference and subjected to a pressure (p) uniformly distributed over the area is given by $$t_1 = k_1 \cdot d \sqrt{\frac{p}{\sigma_t}}$$ where $\sigma_r = \text{Allowable design stress.}$