Slope and Deflection

81 Introduction

In certain situations it becomes necessary to
to minimise deflection. Thus it becomes essential to de
for statically indeterminate or fixed beams it becomes necessary |
deflection at salient points. We shall deal with these problems in this chapter. |
8:2 Bending with Uniform Curvature ; g

Consider a beam ACB of length ¢, bent in the form of a circular arc {iDB. Let CD be the
deflection equal to y and OB be the radius of curvature equal to R as shown in Fig, 8.1, |

Now ACxCB =FCxCD
2
4

y2-2R3'+T=0

_2R+{4R%-1? 81)

design a machine component or a stryy, |
termine the deflection of the membey, Alse
to determine the slope gy, |

|
f
|
|

'
v |

!
i
i

=(2R-y)y =2Ry-y*

S

Also

Hence y can be determined.

Let the tangent at B makes an angle 0 with the
axis of the beam.

Slope at B=tan0=d‘y
dx Eolie
For 0 to be small, tan 0 =0 = sin 0 Fig. 81 Bending of a beam
N sin 0 = BC - with uniform curvature.
OB 2R
Ml ' ;
| A .
2E1 A8 |

!

§

83 Differential Equation of the Deflection Curve !‘
)

Consider a beam AB which takes th
e curved s} in Fi . ider &
elementary length CD equal tods of the beam. Let the i;:ggnistslél(::’:lLllztli;l%;lfvze il(:)b('ff?:;es wi

50
the x-axis of the beam an angle 6. The g : Is
at C and D intersect at O, ngle at D will decrease and let it be (0 — d0). The nor™®
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: If R is the radius of curvature of the bent beam,
then [Fig. 82 (b)),

, OC=0D=R
and ZCOD =do
; CD =ds = Rd©
1_do
R ds
Now from Fig. 8-2 (¢),
d
| tan 0 =E—':Ci
where y = Deflection of the beam

Differentiating with respect to s, we get

% tanB:—Cl—[in

ds\dx
' i de d?ydx
i Fig. 82 Deriving differential - cec? 0 4o _ 2 g
" eqﬂation of deflection curve. "
] dx _ 0 .
Now ZS- =cCos
2
g dB _d°y
ect, —=—%5
° ds dx?
de _ d2y 1

3_ dx? "sec® 9
sec20 =1+ tan20

de _d%y 1

—= . 2
ds dx? (1+tan29)3

d’y .
do dx? e 1 ..(8:3a)
ds 1+ 311

dx

This is the well known Newton’s formula;for curvature.

dy ; 1 and its square is negligible. Hence
Ifthe curvature is very small, then Iz is also small a

1 d%y
—_— —
R dx?
j M _ d%y ...(8:3b)
El dx®

tension is caused in the bottom fibres

) ; itive if ;
Hihg heThe bending moment has been taken 88 POS L Ll irvature. The curvature is taken

™. The positive bendin g moment should cause posi

Bty
Eift . bent curve 0 : - (0
Uty o ;:i::lil:re of‘t(‘:urv:}ture glfeazngeizs in going from C to D. Hence with proper sign
positive, the an ' :
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Slope of the beam,
Deflection,
Shear force,

and uniform load,

8-4 Methods of Solution

The following methods are generally used t |

of a beam.
(i) Macaulay’s method.

8-4-1 Macaulay’s Method.
This method is suitable for cases of W,
beams subjected to concentrated
loads and can be extended to
uniformly distributed loads also. It ’
consists of successive integration R, X;
of expressions for bending moment b
in such a way that same constants
of integration are valid for all
portions of the beam even though
the law of bending moment differs X3
from portion to portion. For the " ©)
beam shown in Fig. 8:3, the
expressions for B.M. in different

parts of the beam are :
At section (1)—(1),
At section (2)—(2),
At section (3)—(3),

At section (x)—(x),

is the general expréssion for bendin

. £ moment,
adopted that a bracket is disregarded when for o
becomes negative. Therefore, it follows that b
out until a numerical substitution is made fo

[We-a)ax=Wlx-0a)
7

The general expression for bendin

the right hand support or load.

M, =R, Xxl-W]_ (xl—a)
ng =RA sz—-Wl (xg-—a)— Wg (xz—b)
ng = RA X x3—W1 (x3— a)—W2 (x3 - b)-Wy (x3- ¢)

STRENGTH OF Mgy, |
4 AI,S

) ol
1 _._.(_]'-(-]-=-M"='".d Z f
d2y (8.4
_M=El = 4
M=4 dax? ).
dy __[M gz (84
p Iz )
2 |
ys_-,U-E‘-l- dx.dx (8:6);
dy
podM__ g1 2% (87
X X i
dly i
=-El— (88) !
w o (88)?

i
o determine the slope and deflection at a point |

(ii) Moment area method. (iii) Conjugate beam method.
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Fig. 8:3 Beam subjected to concentrated loads.

M.=R, x x~W, (x—-a)-W2 (x—b)- W3 (x—¢)

: 18
general expression holds if the conver twn;t
a particular value of x the contents of the br'a‘;ie
racket terms must be kept in tact and not m“ltlps is
rx. The form of integration for a particular term

. , fore
g moment must be written by taking a section just y
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07" AND DEFLECTION 545
w/unit length If there is a uniformly distributed

load starting anywhere and extending upto

B the right end then the general equation for

v ' 1 bending moment will hold good for the entire
X ———'i beam. However, if the load does not extend

Rg upto the right end, the load may be extended

i ' . upto the right end, and an equal and opposite
Qw/unlf ergth load may bi addcd’to counte:'lact the effect due
! to the additional load. For example, for the
A B beam shown in Fig. 8:4 (a),
° ¥ w(x - a)2
t My=Rpxx-——5——
(-b) whereas for the beam shown in Fig. 84 (b),
‘-w/unn s | the load is not extending upto the right end.
L ) ! { In Fig. 84 (c¢) the load is extendec.i upto th_e
A ] [ B right end and an equal and opposite loa_d is
applied on the portion of the beam to the right
2 ""L”_‘ b —— of the load which was earlier unloaded. I_n
X . Rg this case, the bending moment expression 18
Ra w/unit length ) ( b)2
w(x-a w(x-a-
(C) MI = RA X x— ( 2 ) + 2

Fig. 8-4 Beam having u.d.l. on partial length.

8-4-1.1 Point load on a simply supported beam. Consider a beam of length /, simply
supported at the ends and carrying a concentrated load W at a distance a from left end A. Taking

asection at a distance x from left end A as shown in Fig. 85,

M, =Ry x x-W (x—a) (a) i w ®. B
Wb Wb ‘ IE L
N = = — —0 b R
T e i
Wa Wa

B= Tb =7 Fig. 8-5 Beam having a point load.

Differential equation of bending becomes :

: 2
El:i—%—’—_--—Mx=—RA xx+W(x-a)

dx

Wb wix-a) B
a+b : |

bx?  W(x+a)®
Integrati t E dy __ Lk + +C, «=AC)

wh i dx  2(a+b) 2
e Cy is a constant of integration.
A 3 W(x _ a)3
T : , s DK WO o B O

tegrating again, we get Ely= 6(a+) i 6 1 3 (@)

Whe 2 ]
e Cy is another constant of integration.

Now the end conditions are : _
At x = 0) y - 0

-
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or

At | x_=0

STRENGTH OF M ATERIALS
Also at x=a+by=0
2
__[i (a+b)2+ +Cl(a+b_)
D) 21 Wab
Cl(a+b)= 6{ (a+b) -b }"_—[a b+2ab ]'- (a+2b)
Wab(a+2b
€1="% (a+bJ

Substituting in Eq. (b), we get

Whbha? W(x-—r:t)3 +Wab (a +2b)x

BLy="Gasb) " 6 6 La+b

-(e)

Similarly, Eq. (c) becomes :

dy Whx? +W(x—a)2+Wab(a+2b)
dx 2(a+b) - 2 6 \a+b

Deflection under the load is obtained by putting x = a in Eq. (e).

Wba® W(x-a)® Wab(a+2b
Ech = - + + a
6(a+b) 6 6 a+b
Wha® Wazb a+2b) Wa?b Walb?
[ + 2b = CE] =
"6(a+b) 6 (a+b “6(a+b) 3(a+b)
- Wa?b? " Wa?b?
Ye= B+ b)EI ~ BEII (811)
If the concentrated load W is acting at mid-span, then
ik,
wid
Ty (812

To determine the maximum deflection,

dy _
dx—o

Wha? W("‘a)z Wab
"6+t 3t 6 (CH%)"

a+b
For x to be more than a, the second bracket becomes negative and is neglected.
_a(a+2b)
3

3

E Y ) .
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ofF AND DEFLECTION 3
bl
EI[QZ) _Wab (E_t_z_é
¥x=0 6 Zrh
Wab (a+2b |
04 = a+2b
AT GET (a+b) (814
—p_ L
For a—b_E
o, Wi
hy ...(8:15)
At e
EI[-d_y) =—'M+Wb2+wab a+2b
dx x=£- 2 2 6 a+b
=E£|:—l+b+2(a+2b) __Wab 2a+bJ
: ’ : i 6. a+b
_Wab (2a+b
BT 6EI (a+b) a6
' l
For a=b='_
wi?
i ..(8-17
9= TeET -

84:1:2 Uniformly distributed load on a simply supporte_d b.eam. Conside; a bes'n'n
#Boflength ¢, simply supported at the ends and carrying a uniformly distributed load of intensity
vper unit length as shown in Fig. 8-6. Taking a section at a distance x from left end A, we have

2

M.=R e sallEt)
x AXX 2 @
: ] w per unit length
ow RA - RB = Lol —
2 y ) Y v Y 1
. . % . 3 l B
Differential equation of bending is A“‘t b 1 S !
d2y ¥ 5 = T ST -_R
EI i M, | Ry _ @ -
9 2 Fig. 8:6
o YRS S N ;
Integrating, we get ’ g
2
gproy__wie B% ,c, -+l
Moy dx 4 6
115 a constant of integration.
Integrating again, we get 3 4
NOW at ‘ x= 0, y= 0

i C2=0
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cantilever beam AB of leng 1 ¢ carrying a concentrated load W in Fig. 87
: ; ad Fig. 81
Taking a section at a distance x from the free end, we at the free end as shown in F1g

b .
B’{’ # ( E\V Thus differential equation of bending becom®s |
1 = ‘TAgT d? )
(a
1 & P EI dxg=*Mx=Wx !
Fig. 8-7 Cantilever carrying Integratin
concentrated load at free end. o )
d
) ’ s Er &y We +C,
where Cj is a constant of integration. dx 2
Integrating again, we get Ely = Wa? (c)
g} Cix+c,

where Cj is another constant of integration,

STRENGTH OF MATEg,,
s

Also at x=Ly=0 ;
3 4 {
S L Y
12 24
wl®

€1=%4 ~

Substituting in Eq. (d), we get

3 4 widx

wlx® wx w :
- pa————— .
Ely=-"1"""94 " 24 ~(818) |

At x =% the deflection is maximum
wi*  wl® wl*x 5wl?

3 5wilt ;
ymax = 384 EI -..(8'19) g
Similarly Eq. (¢) becomes : |
dy wlx? wx® wi? i
El —=- L —
e : 6 24 ~(8:20) |
At x=0 _ i
£2 f
Elog=2t.
A 24 [
wi? 4
= ) 8'21) ‘
AT 24 ET , ( :
At x=] '
3 3 3 3 f
EIGB=—wl +w£ +wl =_-IU_l— [
4 6 24 24 ;
_ wid ,
B=5i Bl , ..(822) :

8-4-1-3 Cantilevcr beam carrying a concentrated load at the free end. Consider? |

have

M =-Wxbeing a hogging moment. .a)

®
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At £=l, y=0, &9,
dx
i
2
0y = WIP
3
fence Egs. (6) and (c) becomes respectively
E1 &y _Wal w2
dx 2 2 .(8:23)
Ely= W:i__ wi? x wi3
6 B ..(8:24)
At x=0
0. . Wi
A — e .
2E]T ...(8:25)
_wis
A= 3E] ...(8:26)
~vesign indicates that the slope is convex upwards.
8-4:.1:'4 Cantilever beam
arrying a uniformly distributed _
lad over the whole span. Consider a ) . ®) g~ Wiunit langth
wntilever AB of length [ and carrying B b | v oy 44 A
wiformly distributed load of intensity w 'j _________ L Ba T
per unit length as shown in Fig. 8:8. =X Ya
Consider a section at a distance x from i _L
the free end A. Then at x—x, |
| L}
2
M, =- 2z Fig. 8-8 Cantilever carrying u.d.l.
. heing 8 hogging miment @ over whole span.
The differential equation for bending becomes
2
dzy _ _wx
EI ——3=- M,=—5
d 3
Integrating, weget EI ﬂ = (e +C, --(b)
115 a constant of integration.
' ..(c)

4
Integfating again, we get EIy = lvzi + Cl x + Cz

where .
Cyis another constant of integration.

NOWat le,yzo
£ 4y _g
dx
wil’
C1=-"5"
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4
w[4 UJl _ﬂ_{_
25" 6 8
dy_wxs__lg_l_i "f;/f,
EI E;—— 6 6
4 12 wl
wx w { “)c
Ely= 24 "6 = 8 %)
At x=0 .
u.’l (% e
O4="%E1 i
__.LU[4 f’::'!
YATBEI

— ve sign indicates that slope is convex upwards.

8.4-1-5 Cantilever beam carrying a concentrated load not at t!'le free end. (;?‘ngd,ﬂ :
a cantilever beam AB of length [ and carrying a concentrated load W at a distance fr‘rjmf‘m, fres
end A. Taking a section at a distance x from the free end, the bending moment at xz—x is (Fig, 2.4,

My=-W (-a)

3 w 2 m 2

; @ C“’—“—"A E[d gz——Mx:W(J:-—aj
B (15 X ~ dx
( Integrating we get
Fig. 8-9 Cantilever carrying 7 ‘ llEI dy W(x- 0)2 c ”
concentrated load any where. P 2 +0; e
where C, is constant of integration.
3 e

Integrating again, we get Ely = Nig—e) +Cx+C, ‘ .Ae)

where Cj is another constant of integration.

At x=l.y=0
dy
dx_o
2
sl 0-Yl-0a)’ W(@-a)?;
6 ) +Cy

3
c,=-Wl-a)" wi-a)
2

_W(-q)?
- ea [‘U-—a)'+3£]=.‘y(‘!_£"“"_)_2[21+a]

EI _@1=M W(l-a)?
-..____-—-—-

dx ) 5 .,.(8‘31J
W(x-q)?

Ely= a)”  W(l-q)2 - 2
_"_“‘3—-—---____9)_72:_*_____‘5’([;:1) (2! +a) ,..(3‘32)

e
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30
At x=a
grdy__Wi-o)
dx 2
dy W(l-a)®
i gL ) .
dx CT T oRI ...(8:33)
W(il-a)’a W(-a)?
6
W(l-a)? .
Ml [- 3a+2z+a]=M—(2z—2a)
6 T 6
W(-a)®
=TT anr ...(8-34)
- Y= TTSEI (
Negative sign for slope at C indicates that it is convex upwards.
g.4.1:6 Simply supported beam subjected to a pure
ouple. Consider 2 simply supported beam AB of length!and Mo ®
fubjected to a couple Mg at point C at a distance a from left end A P B
:upportA a5 shown in Fig. 8-10. Taking a section at a distance x N Jl—a4R
fn A, | _i,.é() B
M, = Ry x x-Mj (x—a)° (@) ;
' Fig. 8-10 Beam subjected
Mo Mg to pure couple
where RA=-—'I—,RB="—Z— P .
d’y _ o i
Then EIdx2=-—Mx..———x+M0(x a)
M 2
lntegrating we get EI g__)_f_z____()_ X f-—-i-l‘l{) (x—a)+Cl ...(b)
’ dx l 2
{ ™ereCyis a constant of integration. >
Moz 4y (e
Inbe.grating agajn, we get Ely=- g[ +M0 ————2-—'—+Clx+102 (C)
Wh : )
" C2 is anaother constant of integration.
1 = x=0, y=0
l.r C2 = 0
At il =0
2
Mol (t-a) +C,1
=g " .2
Myl (1-a)
Cr=—5— Mo 2
2 MO l Mo (l - a)
o 82 Mo® L ypg(x-a)+ =5~ g ...(8:35)
A _ dx 21 .
t v =0 _
2
Mol__ﬁf[_ﬂ.(_l_—f—)-— ...(8-36)
04=0=gE1  2EIl
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362 BRIy
At x=da D
Myl MIJZ_M”(I#")
Bl0g = =5+ 21
Moa* Myl
e ot +Mya (83
Mux:’ MO(*""(‘) M,lx MO([—Q)z"'
Bly==-—ar—* 2 6 21 (83
At x=0 5
Mya® M(J[“_Mﬂ(l"a) = |
ilye=—27—"%""% 21
[ E
=2 M(,la Mg - +Mga® «(8:39) |
3 i
If a =-2€-, then F
M,! |
OC - ' 3
121 (840) |
Yo =0 |

8.4.1.7 Beams of varying cross-section. For a beam of varying cross-section and made
of different materials, EI should be taken inside the integration sign. For example,

d2y |
EI E;? =-M,
dgy _ M,
dx? EI
d M
dx El .
gﬁ"sider a beam made of two materials and different cross-section as shown in Fig. 8:11.
en
My =Rpx2-W;(x-a)- W, (x-b)
RA (ll+lz) =W1 (ll+12-a)+W2 (ll+l2_b) r/t Wz
R4=w1[1-l“ )+W2 oo ®
Ty LAl ‘C D |
RB=(W1+W2)-RA A E I‘ i
) P ] ' fRe
. EI d y _ M RA |.1 1 12 1
d2y AP, Mx @
dx? EI Fig. 8:11. Beam of varying cross-sectio™

_Baxx W(x- '
*""—E:I—-+—~l_(f__fl+wz(x-b)

EI EI
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| otegratin® we ge
dy I { -R,y xx W](x—a) W
e B 2(x-b
1
2 | —Rpaxx W (x-
2 ol 5 Eol, x+C,
h thh | ~Rygxx W
= l(x_a) W(x—b
Then y J-0 '[0 { EI, ! E\I, ¥ 2ElIl )}dx.dx
+Jazz jlz —~Ry xx+W1(x—a) Wg(x—b)- ,
11 Y1 E,I, Eyls T E,I, dx.dx+Cyx+C,

d Beams and Cantilevers. | S
g41:8 Proppe . rs. Inorder to determine the known reaction at
op, the deflection at the prop may be thought of to be composed of two parts. S

(i pownward deflection at the prop location due to the external applied loads

i) Upward deflection at the prop location due to the reaction at the prop.

put the deflection at the prop is zero.

Hence the algebraic sum of the above two deflections should be equated to zero to determine
., known reaction at the prop. ,

8419 Sinking of Prop. If the prop is of the sinking type or an elastic prop and sinks by
.mount 5, then the resultant deflection at the prop location should be equated to 6.

Example 8:1 A horizontal girder of steel having uniform section is 14 m long and is simply
wted at its ends. It carries concentrated loads of 120 kN and 80 kN at two points 3 m and 4:5
“mthe two end's respectively. 1 for the section of the girder is 16 x 1 0% cm* and E for steel is 210
"2 (deulate the deflection of the girder at points under the two loads.

Solution. Taking moments
about B, we get

mi“” 8okN ® Ra x14=120 x 11+ 80 x 45
A c Dy | = 1680
I 18
 [=im—] - L 4e5m — Ry=120 kN
o X ‘ —J® Rg Taking a section at x-x as

- .
L\ 14m  » shown in Fig. 8-12,

‘ M,=Rs xx-120(x-3)

P 812 ' - 80(x-95)

2
EId y='—120x+120(x-—3)+80(x—9-5)
Integras: dx?
Srating, we get
' 40 . o.5)3 o
Ag Ely_=—20x3+20(x—3)3+—-3—(x 9-5)3 + Cyx + L2
: x=0 y=0
At Cy=0
x =14m, y=0 5
)3+fl-3—(14—9-5)=”+1401

0=—20x143+20(14-3
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54880 + 26620 + 1215+14C1= —27045 + 14C,

C, = 1931:8 kN-m® o
Ely = — 20z + 20(x — 38+ 3 (x —9-5)% + 1931-8«
At x= 3 m 40
_9.5)3 =.
EIy=_540+20(3_3)3+ 5 (3 -9-5)° + 57954
_ _ 540 + 5795-4 = 52554

3
B 52554 x 10 - =1564 x 102 m
Y= 210x 103 x 16 x 10~

Note that the third bracket being negative is neglected.
At - x=95m,

0 1
Ely = - 20(9:5) + 20(9-5 - 3)° + % (9-5-95)° + 19318 x 63 |
= _17147-5 + 5492-5 + 18351-6 = 6696-6 kN-m?®

_ 66966 x 10°
Y= 210x10° x 0% x 16
Example 8-2 A beam AB simply supported at the ends is 4 m long. It carries a uniformly
distributed load of intensity 20 RN/ m over a length of 2 m starting at a distance of 1 m from lefterd

support together with a concentrated load 40 kN at a distance of 3 m from the left end support.
Calculate the deflection at the centre, if E = 210 GPa, I = 9600 cm*.

Solution. Consider a

=1994 x 102 m

section at a distance x from the left 40kN

end support as shown in Fig. 8-10. 20kN/m % @

The distributed load does not extend C ' {

upto the right end support. So we A F ' B

extend this load upto the right end R DLLiTLRB

and apply equal and opposite load Al 4 _ _l_ | -

over the portion DB. - 1m 2m Pk ™ 204Hjm
Taking moments about B, we a ) 4@

get Fig. 8-13

RAX4=40x1+20x2x2=120

R4 =30kN
Mx=30:c—-20(x_.1).(x—1)
2

+20(x - 3) .(—x—;i)— 40(x-3)
= 30x-10(x — 1)2 4 10(x - 3)2

- 40(x - 3)
dzy
Now EI TP e M,
==30x + 10(x - 1)2_

Integrating twice, we get ¥~ 10 - 3)2 +40(x - 3)

dy

BI===-15x2,10-1)° 10(x_3)3
s -3
fR B “-T)-+20(x_3)2+cl

- 5(x -1)4
Ezy__5x3+-ii__1_)___ 5(x - 3)* 20(x - 8)3
5 -_._6____+_______+Clx+02

T R R e e S A T e e
Scanned by CamScanner



At mid-span,

356
x=0, y=0
Cz=0
x.=4m; y=0
0 =-2320+67-5-0.83 + 6.67 4

4C; = - 24646 + 4C,

e 4 4
EIy:-—5x3+5(x 1) ;.\5(.‘5—3) +2..q (x-3)3+61'61x
6 -6 3
x=2m |
Ely =— 40 + 0-833 x 123-22
L 3
84-053 x 10 o L1685 1075 55

" 210 x 10° x 9600 x 108
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