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Simple Bending of Beams
M
7.1 Introduction :

n thi§ G we shgll study the bending of prismatic beams of symmetrical cross-section
under the action ofl')endmg moments only. The distribution of horizontal shear in beams will also
bediscussed in detail. Before actually studying the theory of simple bending, the knowledge of some
of the definitions 1s essential. E ‘
Definitions

Centroid. The centroid of a figure is that point in the figure at which all the area may be
assumed to be (foncentrated. If a figure be sub-divided into rectangular areas, A; A,,...and the
perpendicular distances of the centroids of these areas from two chosen coordinate axes x and y are

y1,¥2 -and x1, xp...respectively then the coordinates of the centroid (x, y)of the area of the whole
figure are given by :

Alxl +A2x2+... ):Aixi ZAixi

x= - - ol L)
Al +A2 +... EAL A
_ Ajyi+Agys+.. TAy; YAy (7:2)
y= = = )
A]_ +A2 + oo ZA,' A
where A = total area of the figure.

‘Moment of inertia. The moment of inertia or the second moment of the area about a given

axis is the product of the element of area and the square of the distance of the centroid from the
axis.

Thus I,=Yy*dA
and ‘ Iy = Zx?" dA _
or I =AK? w(7:8)
where A = area of the figure

K = radius of gyration.

Parallel axis theorem. The moment of inertia of a figure about any axis in its plane is
equal to the total sum of the moment of inertia of the figure about a parallel axis through the
¢entroid of the figure plus the product of the total area of the figure and the square of the distance

®tween the parallel centroidal axis and the axes of reference. For Example

Ixx =z +A§2
Iyy=I§§ +A;2

Neutral axis. Neutral axis of a beam is the axis at which the bending stress is zero.

.

«(T4)
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. - ]ies in the centroidal plap,
ducing bending - be simple bendj Such th
: ing. When the load pro0 . ig said to be p nding, .
bending?;n;g:zgzi;?;nid by torsion ther e bzntiuslfcll'l a system of bending loads g, ,
Pure bending. When a beam 5 Sub‘-]secsf:id to be subjected to pure bending. In Such :t the
C

hen the beam 1
tant in the beam:

shear force in the beam is zero t ;
the bending moment shall be cons
7.3 Theory of Simple Bending : O ——

When a beam is bent duc £9 the apelicstel le bending. In simple bendir,lg th Out beip,
subjected to shear, it is said to be in @ sta‘fe og :]r';‘jgéetheory Ao fe]polaﬂe 3
ntroidal plane comnciée: =~ o o ped)
g:]?asl:;f: r%z:'cr)lzclilsll?r;igh;tce\’enant and is also someé tu?;s cz)irlled the Bernoulli's theory of simp[:

: ' .\ this theory :
I i tions are made 11 this the ' |

bending. The following assumptio A G A

ial is assumed to be h _ _ _
1. The material is a h is plane before bending, will remain a play, afe
: T

faco

9. A transverse section of a beam, whic
bending.

3. The radius of curvatur
transverse dimensions of the beam.

4. The resultant push or pull

5. The elastic limit is nowhere exceeded.

6. Young's modulus for the material is same in te

7. The transverse section of the beam is symmetrical about an axis passing through th
centroid of the section and parallel to the plane of bending.

Consider the portion of a beam subjected to simple bending as shown in Fig. 7-1(a). In the
unstrained state, let GH be a portion of a fibre at a distancey from the centroidal axis KL, its length
being determined by the two transverse parallel planes AD and BC. After bending, the planesAD
and BC assume the positions A; D; and B; C; respectively as shown in Fig.7-1 (b), being inclined
at an angle 9 and intersecting at the point O, the centre of curvature. Let R be the radius of the
centroidal surface E; F; so that the radius of surface Gy Hy is (R +y).

GiH;, (R+y)6 R+y

e of the beam before bending 18 Very large in comparison o,

across a tranverse section of the beam is zero.

nsion and compression.

Now = =
EF RO R
M, D C
K( : E F
i —r
A B

((1)

Fig. 7'1 Beam subjected tg simple bending

Strain in the fibres at GH is, ¢ = E_l_ql_ﬂ

GH
E0Y - -
Z_LEI_‘-'_‘.E-F—‘:EI_I_IA_I R+y
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e=d
of <
It O = intensity of stress in the fibres, then
o =FEe
of R
c_E
o y R -

. E .
Foragivenload.en abeam, B constant (say = k) then, o = ky, i.e. the stress in the fibres

ofabeam at any point in the cross-section is proportional to its distance from the centroidal axis.

Thus the bending stress will be maximum at the boundary of the beam which is at the greatest
«tance from the centroidal axis.

dis
In order to locate the position of the neutral axis, ¢consider an element of area dA at a
gistance y from the centroidal axis [Fig. 7-1 (c)]. Total force on the element is then equal to,

dF =c .dA
B t 9_ = (_Ii
a ¥ M
C =0,. 'l'
J1
Hence dF=c,.>.dA
Y1
Total tensile force on the transverse section below the centroidal axis is then (Fig. 7-1 d).
Y .9 dA
F = 01 .—. dA = — z ¥
Sriar 5.4 | Y1

Ifthe elementary area is chosen on the upper side, then the total compressive force on the

transverse section above the centroidal axis will be,
Cg
F2 =—2 ydA
Yo

For equilibrium of the beam,

Fi=Fy
(o | _0'2
yi Jg

-section, therefore

1 i ltant force across. any transverse cross-section, th :
LydA = g l}r;hfl-l;; sfmc:: r?l};(:;(;rii :fotll;zs;lrea about the centroidal axis 1s zero whlclcli_ls p(:;sxble ()tn15{
ifthe Deu’tr'ai axis l;assses through the centroidal axis. Thus in case of simple bending, the neutra
%is passes thkough the centroid of the section.

force acting on the elementary area dA about the neutral axis is,

Now the moment of the
' o
dM =— y%dA
B |

tingonvVv

The total moment of all the forces ac
formg 5 couple which is equal to the bending moment

Fesistance.

arious elements composing the cross-section
M. This total moment is called the moment
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= 9—1—2 ysz
Y1 . of the cross-section about the neutrg] axis
f inertia 0 '
Now Yy2dA =1, the moment 0
o8] i
M=—
¥1
M_01_0
Hence -I—— = ?}’T = ¥ "
Combining Egs. (a) and (b), we get
_ﬂ-l—s—q—.':—E- .(75}
I y R
This is the well-know bending formula.
;
M=o
Also .
or M=oz
where s £ e
5 4
is called the section modulus.
m x 4 cm is 2 m long and is simply supported at thy

ends. It carries a load 1 kN at mid-span.
beam. d

simply supported at the ends and carries a uniformly distributed load of 20 kN/m Ift

Example 7-1 A rectangular beam 6 ¢ _
mum bending stress induced in the

Determine the maxi

Solution. Maximum bending moment
iy 2 G s

4 4
bh® 6x43x10°8
I= = = -8 4
1 T 32x10"°" m
Maximum bending stress will occur at y = 2 cm.
Now M_o
I vy
M
o=—.y

=31-25 MPa

32x10-8

Exampple 7-2 The cross-section of a cast-iron beam is shown in Fig. 72 (@). This peam i$
: he spat of th

beam is 3 m, determine the maximum tensile and compressive stresses in the beam

Solution. Taking moments about the bottom edge of the b
eam,

(10x2+2><10+20x3)§=10x2x14-+2x10x8+20x3x1-5
(20 + 20 + 60)y = 280 + 160 + 99
100 7 = 530
¥y=53cm

_
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GPLE BENDING OF BEAMS

10 x 2°
I'=="79

+10 x 2(14 — 5.3)2 4

2x10

283

B 3
+2x10(8 - 53)2 + @1%3— +20 x 3(5:3 - 1-5)2

= 6667 + 1513-8 + 165.667 4 145-8 + 866-4
= 2744334 cm* = 2744334 x 10-8 14

wi? 20 x (3)2

M=

Now 8 8
=22-5 kN-m F—10cm—-, iy
M_o I [ 2cm
e i P
MI ‘r:um compressi S N o 14_2“1
axi ive 5 —_— A o
pending Stress; i 2
- 7 ¥ y
o= 2015 -5:3)1072 + - T s
I 3 — 20cm 0
99-5 x 103 x 97 x 10 2 ( b) Stress-distributi
LG9 = a) e (b) Stress-distribution.
_79-527 MPa e
Maximum tensile bending stress,
o =%I- x 5:3 x 102
29. 3 . -2
_22-56x10" x5-:3x10 — 43-453 MPa

2744-334 x 108

Example 7-3 Two wooden planks 5 cm x 15 cm each are connected togéther to form a cross-
section of @ beam as shown in Fig. 7-3 (a). If a bending moment of 3400 N-m is applied around the
horizontal neutral axis, find the stresses at the extreme fibres of the cross-section. Also calculate the

total tensile force on the cross-section.

Solution. Taking moments about the bottom edge, we

have %
=Bem—, 0 (15x5+15x5)y =15 x5x 175 +15x 5 x 7:5
Scm 150 y = 1875
’
K PP y =12:5 cm
n
B j 15 x 5°
Y I= 15 +15x5x(17-5-12-5)2
t 5 x 15°
Mg oo+ 5% 15 (126 - 7:5)2
(a) (b) Stress - 156-25 +1875 + 1406-25 +1875
distribution. '
Fig. 7-3 = 5312-5 cm* = 5312:5 x 108 m?
M _o 3400 x 125 x 10”2
= — 2: 10 = =8 MPa
Sy RGN 53125 x 10~ °
-9 :
M 5 3400x75x10°2 _
¥ i75x1072%= = 4-8 MPa
To =T s 53125 x 10~ °

Total tensile force on the section

.
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284 . oh
g x 10 ><5J yay
(5 xy] bdy=—135 " Jo
: :
5 2 -4 _
6 2_2_12 -16x106(12-5) x 107 =25 kN
.“—'3'2’(10 2 0

) . » element used as a beam s sh
3 or machme e :
Example 7-4 The cross-section ofa cta.::1 ;)row T eorizontal neutral axis. The per

Fig. 74 (a). The beam resists bending momen22 L 88 1Pa respectively.

- be .

] jon and compression are to . ontal neutr '

resses ten:wn i ! ¢ of resistance of the section about the horiz al axis for j, "
Calculate the momen

positive and negative bending moments. t
Solution. Taking moments about the botto

=15x10x1—25-—7-5x5x8-75

own iy
mwsibte

m edge1 we get

(15x 10-75x5)y
(150 — 37-5) y = 1125 — 328-125

112:5 y = 796-875

y =7-08 cm

| -H—ﬂcrn_qus-l__ 261 2
R0,
/
i

T
=
|

N+~

22 19-67

(@) (b) Stress-distribution.
Fig. 7-4

10 x 153 3
=== +10x15(7-5-7.08)2_ 3 X (1) o o & (g.75- 708
| 12
= 28125 + 2646 ~ 115.78 — 104.53

= 255860 cm* = 2558-6 x 10-8 m4
For positive moment, stress at the top is Compressive and at the bottom is is tensile:

N op = 22 MPa
_ 22
O, = =08 * 7-92 = 24.61 MPa at the top
M=2t 1. 22x10 x 2555.6 10-8
. 708 % 102 =T7950-5 N-m

For negative moment, stress at the top wij] be tensi]
ile,

Stress at the bottom, ¢ =

—_——

7.92 © 7-08 = 19-67 MPa

el
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g!

22 x10° x 2558-6 x 10~°
7-92 x 102

Example 7.5 A.wooden beam is 8 cm wide and 12 cm deep with a semi-circular graove of
nradius planned outin the centre of each side. Calculate the maximum stress in the section when
s supported on a span of 3 m, loaded with a concentrated load of 450 N ata distance of 1 m from

- : m,
;;,?‘gri ond and a uniformly distributed load of 500 N per metre run over the whole span.

Solution. For the beam shown in Fig. 7-5 (a),

=7107-2 N-m

F—8cm —|

[ 450N r‘SOONIm

E Y Y y Y Y Y 4 4

2cm 2cm A C L

le—— 1M —> .

l < 3m >
| : L | Ra Rs
| ' (a) b)

I Fig. 7-56
3
[=8x12" _ ®  44_1150-12:57

12 64
=1139-43 cm# = 11389-43 x 10-8 m*
Now for the beam loaded as shown in Fig. 7-5 (b),
RAx3=450x2+500x3x1-5=900+2250=3150
Rs=1050 N
R4 + Rp = 450 + 500 x 3 = 1950 N

Rp = 1950 — 1050 = 900 N

M. = Ry x x — 450 (x -1) — 500x x —’25
=1050x-450x + 450-250x2 = 600x + 450-250x2

For bending moment to be maximum,

M, _
dx

600-500x =0

x=12m

Mgy = 600 x 1-2 + 450 — 250 (1-2)2 = 720 + 450 — 360 = 810 N-m
G M
y I
_ 810x6x1072

o= - =4-265 MN/m?
1139-43 x 10

foee Exampler 7.6 The cross-section of a simply supported beam is shown in Fig. 7-6. The beam
’;”‘-’3 aload P=10 kN as shown. Its selfweight is 3-5 kN /m. Calculate the maximum normal stress
ection a-a. ' ;

-
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| a2 0 C rn——2~
—{ J0CM =

[*—30cm

Fig. 7-6 Fig. 7-7
i, 7
Solutitlan. Taking moment about the bottom edge (Fig. 7-7), we get

(zo x 30— 152)§=20x30x 15 - 2 x 152 20
(600-176-7) 7 = 9000 — 3534

423-3 5 = 5466
; =129 cm

Moment of inertia about N.A.,

3
1=&’£§31—+20x30(15-12-9)2—

nx15% nx15° y
64 - 1 (20 -12-9*
= 45,000 + 2646-2484-94 — 8907-44
= 36253-72 cm* = 36253-72 x 108 m*
Taking moments about Ry, we get
Ryx36=10x12+35x36x18=12 + 22-68 = 34-68

R, = 3::? =9-633 kN

Bending moment at a-a,
M =9633 x 1-2-350 x 1-2 x 0-6 = 11-56 — 2-52 = 9-04 kN-m
o= . (30-12.9)x 10-2 = 204 x10° x 171 x 1072 _ | o4 MPa
36253-72 x 10~ 8
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