OF FORMULA FOR HORIZONTAL
RESS

Consider t : _

dx, as sho;v: :,d?i(;e“; ;ectlons, (1) and (2), in a beam separated by the distance

a free body. Figure §.5; . 274 let the shaded part between them be isolated as

which it is taken be; IS a Pictorial representation of this part, the beam from

Assume th bel Ng shown in dashed outline.

(1), thus musjngela,;;fglg moment at section (2) to be larger than that at section

fore the resultant hoﬁzonzjural stresses on section (2) than on section (1). There-

(2) will be greater thag ¢ thrust , Caused by the compressive forces on section

lerence berces. 57 € resultant horizontal thrust & 1 on section (1). This
€N f1; and H, can be balanced only by the resisting shear force

dF acting on the bottom face of the fr, :
. ee body,
the top or side faces of the free body. Y, since no external force acts on

-

= T

AN

Section (1) —_ f«— Section (2) |<—b_>1

N
e——
€ - ¢
-
~4—‘<—J

Resisting shear
dF = 7bdx

Figure 5-21
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Figure 5-22

Since H, — H, is the summation of the differences ip thrusts 4, -
g, dA on the ends of all elements contained in the part shown ip Fig. 5.

: : 3
horizontal summation of forces gives
[XFu=0] dF=H,-H,
=f (5} dA _f a, dA
: » Y,
| Replacing the flexural stress o by its equivalent My/I, we obtain
O e
M. M M, — %
| B vde by MM,
SerRIR M felr 1 Jy, 1 Jy, 7
~ From Fig ?3-\1 we note that dF = rp dx, where 7 is the average shearing
er the « ntlal area of width 4 and length dx; also that M, - M,
crential change in bending moment dM in the distance dx;

8 relation is rewritten as
233 r v

"y
*

A'is the
is king CO
neutral axjs;
the product 4/
moment of ares.

Iy ¥ dA, which means the sum of the momen’
n;‘”“’“t_l'fll axis, by its equivalent A, Wh:;
€ the layer at which the shearing S"t e
NCNt arm of this area with respect 'wn of

" ©nd view of Fig. 5-21. A variatio .
Mﬂy used to represent the st
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DERIVATION OF FORMULA FOR HORIZONTAL SHEARING STRESS 163
57

Sh‘.’ Flow
If the shearing stress 7 is multiplied by the wi
gnown as shear flow, which represents the longitudinal force per unit length

iransmitted across the section at the leve] V1. It is analogous to the shear flow

discussed previously in the torsion of thin-walled tubes (see page 81). Using
Eg. (53-4), we find that its value is given by

dth b, we obtain a quantity g,

Relation Between Horizontal and
Vertical Shearing Stresses

resisting vertical shear ¥, = ]
18 not feasible to determine =5
ically equal value of 7,

7 dA which balances the vertical shear V. Since it
directly, we have resorted to deriving the numer-

B R

/n

e 320. RO aad- vertical \/v V. </rda
shearing stresses.

To prove the equivalence of 7, and 7,, con_sidelt thCl.l' cﬂ‘eci:‘t [(:;?s aclﬁee.bOd'y
diagram of a typical element in Fig. 5-23. A plCtOﬂal.;{l:\.V 0 ofuus::engn is
shown in Fig. 5-24a; a front view, in Fig. 5-24b..F0r equi lunll'u:)hn b o ent,
the shearing stress 7, on the bottom_face requires an eq i ?5 k;:‘::
stress on the top face. The forces causing these shearing stresses
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y
;4 “._-h——- A R —
/l, dx
TL'1 d)’ lTu 1 dy l dey dz
/A dx
——
N % | g ___.-Th —
(a) (b) Stresses (c) Forces
a
Figure 5-24 Shearing stresses on & typical element.
X
] ounterclockwise couple, which requires clockwise couple o ensure balance
'al”;:le forces of this clockwise couple induce the shearing stresses 7, on the verticy)
of the element as shown. . .
faces about an axis through 4 ( Fig. 5-24c), we obtain

By taking moments
(> M,=0] (1 dx dz)dy — (T, dy dz)dx = 0

from which the constant product dx dy dzis canceled to yield

Ta = T (5-5)

lude therefore that a shearing stress acting on one face of an elemen

We conc.
is always accompanied by a numer ically equal shearing stress acting on a per

pendicular face.
Application to Rectangular Section

‘The distribution of shearing stresses in a rectangular section can be obtained bv
applying Eq. (5-4) to Fig. 5-25. For a layer at a distance y from the neutral axis
we have

P | HTZA:%[”(;-J')][H%@ _y)]

; o B v ‘

. 1 s N I < S8 -

1 = PovE Bgkn T o i-’ ::_h "- .
35 : T A

R — N (S : &

| Figure .%25 Shearing stress is di: B narabolically acroes 3 i section-
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oERVATION OF FORMULA FOR HORIZONTAL SHEARING STRESS

v (h2
PR | - y2
21\ 4 )
bk gt 110D ,
s sho“sot:at the shearing stress is distributed parabolically across the depth
of the SECHET

The maximum shgaring stress occurs at the neutral a
it uting the dimensions of the rectangle in Eq, (5-4),

5 165

pich reduces -
d

xis and is found by

as follows:
W ig 2 v bh\( h
Tr=—Ay=——o _|_|(Z
1Y kb ( 2 )(4)
which reduces to
o (5-6)

This indicates that the maximum shearing stress

in a rectangular section is 50%
greater than the average shear stress. 4

Assumptions and Limitations of Formula

We have assumed, without saying so implicitly, that the shearing stress is uniform
across the width of the cross section. Although this a§sumpﬁon does not hold
rigorously, it is sufficiently accurate for sections in which the flexure forces are
evenly distributed over a horizontal layer. : . .

):I"his condition is present in a rectangular section and in .the w@e-ﬂz;f;
section shown in Fig. 5-26a, where the flexure forces on the v;mcz:lal stlx;xp; =
shaded and unshaded, are evenly distributed across any spng?;Gb wl};cr;: =
this condition does not exist in the triangular section 1trr1al ;gm - din;inishing =
shearing stress is maximum at the left edg‘;—z Of(;‘i:)“;‘; et CRanae the
zero at the right edge. Even here, however, laq;:r Another exception is a circular
average value of shearing stress across any layer.

h
_ (r‘ﬁ\\

(2
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P . 5/STRESSES IN BEAM
N
be shown that the stress at the edge
cross section (:?t o’gﬁl}:‘: n“ in the right half of the figure; byt t;:f r!!l
ﬂﬁ&% o interior points is unknown, although they are 5o, °Z‘(;0n
. thmn:gh a common center C as shown. The vertical COMponents , of the to
l ‘s::nng stresses are usually ass assumed to be uniform across any lay yer, ag ; in t;e
left half of the figure, and are computed by me:lr:s of Eq. (5-4). w With 1 ¢
sumption, the maximum shearing stress across the neutral axis s (P/wrz) 1

elaborate study‘ shows that shearing at the e
z?:fro; 1.23P/xr? at the edges to l 38P/1rr at the center. Utra]

ILLUSTRATIVE PROBLEMS
AP
565 A snnply supponed beam"‘lio mfﬁ' wide, 180 mm deep, and 6 m long g Carries 5
niformly distributed loa ;% b4 ”&’h in Fig. 5-27. (a) Compute g
tr .\ . Yﬂ ped at hor 1tal layers mmapal't fl‘0m top to bonOm for
; tfmmﬁhe leﬁ end. (b) Co:ﬁpuﬁe the maximum shearing stregs de-

1<—120 mm —»

P oy
30 mm
60 mm
B oo ool t
NA
(b)
"—120 mm —

& 77
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hown on the sh : .
parta. Ass ; car diagram (Fig, 5-27 iti :
hear V = (2 F))Lgives V=8 kN at x - 0 m.g a), the definition of vertical

The moment of inertia aboyt the neutral axis i

e ————

12 = 58.32 X 10° mm*

= 58.32 X 1076 ¢

Applying Eq. (5-4) to a layer 30 mm from th :
: t i
the shearing stress is € top (Fig. 5-27b), we find that

[T — _A’}-)-] o= 8000 0 12
Ib (5832 X 10-5y0.135) ©-120 X 0.030)0.075)
= 309 kPa

Note that for consistency of units, the shear force is expressed in newtons (N), the
moment of inertia in quartic meters (m'

*) and the distances in meters (m).
At 60 mm from the top (Fig. 5-27¢), the shearing stress is

[T = — A’f] T = 8000 0 120
Ib (5832 X 10-9)0.120) 120 X 0.060)0.060)
= 494 kPa

The shearing stress at 60 mm from the top can also be computed from Fig.
5-27d, in which the area A’ is resolved into two strips 30 mm thick. Since a moment
of area equals the sum of the moments of area of its parts (i.e., Ay = Z ay), an
identical result is obtained as follows:

% 8000
e & 0.120 X 0.030)0.075)
[T TRk ] ™= 5832 x 10°0.120)

+ (0.120 X 0.030)(0.045)]
= 494 kPa

Although this computation is admittedly more comple)'( .than the preclged;nfs c;t;et,h;:
indicates the procedure to be followed when the area 4’ is more compiex,
case of a wide-flange beam. . :

At the neutral axis, or at 90 mm from the top (Fig. 5-27¢), the shearing stress

is

T=5AV| 7" (5532 X 10°)0.120)
= 555 kPa

[ v ] 8000 (0.120 X 0.090)0.045)

As noted on page 165, this equation determines

If desired, Eq. (5-6) may be used. y rectangular section.

the maximum shearing stress on an

2L 3 8000 . . 585 kP
[' = Eﬁ] T = 510.120)(0.180)

ined
t th d the 150-mm layer ar¢ determin
The shearing stress a

similarly to be 494 and 309 k

e 120-mm layer an
Pa, respectively.
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Note that equal values of r are nhtainu'l at layers o

' beam symmctrical about the n;utral axis. Phyﬂi(‘:l|ly‘ this ;s .

in any % oo page 138, the compressive and tensile flexyre forces Cayg
::;i: ;ancel each other. A“amica")}' . ls/:ff,'c S the ""“"; l

troidal axis, and hence the moment of area |'|‘ i fOra'm"ialam ne cep

above the NA equals that for a §ymmetr1Fa y placed area be)qy, the \4: A 10c4164

since the total moment of area is zero with respect to a centrojqy axis, j ¢ T,

that the moment of area about the‘ NA of th‘? iy abo‘_’e any layer cqu Ill o

the area below that layer. Stated differently, in computing A’y we A8 thay

. ' 2
the area above or that below any layer, depending on which is easier my uuw Cither
se.

>IN r,‘.M’
“ll(h'\'(,”' !

:1'»
I ’ v W!,l:n ’h/-»
axis ‘

part b, The maximum shearing stress occurs at the NA of ¢,
imum shear. The shear diagram 5"’0‘”5 that maximum shear o
and hence from Eq. (5-6) the maximum shearing stress is

3V B 12%10°
[T=5;] Max. 7= 5 (0120 x 0.180) _ 333 kPa

566. A wide-flange beam has the section shown in Fig. 5-28a. At a cross sect;,
the vertical shear is ' = 16 kips, compute (a) the maximum shearing
the shearing stress at the junction of the flange and the web. (c)
stress distribution in the web and determine the percentage of sh
web alone.

€ section of M2y
Urs at ejther end

Ans.

N where
€ss and (b)
Plot the Shearing
€ar carried by the

<281

)

| l“'—s in.—n_! <—1590 psi |
- 1in. @; 11 in. ’ |
/ \

7

|
i |
NA 5 in. ', ]

-

%,

' o 1 in. |
B 7 ! s 233 psi> r-
o m— 1in, :
T = 1240 i
e "l%{“ 3 510N | «——Tave
~ (a)
gl Psiiee; oo . (b) ©
&'“'l ] J‘al
recta Nt of inertig i o ¢
ngle from. &t of in is found by resolving the section into a lar8

'“"‘Med the two shaded rectangles. We obtai?

| Y 12 12

(5-4) i ; In applyint £
’ - 5 £ .

-y Sg?l:pute A'Y as oceurs at the neutral axis. I0 8% qin

the moments of area of the rectangles

e H
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i 16 000
[f " ﬁ’,{y] Max. r = 568(1) (8 % 1X5.5) 4 (5 X 1X2.5)] = 1590 psi

At the junction of the web and flange, the shearing stress is

[r=Las] -l

These stresses vary parabolically from top to bottom of the web, as shown in

fig. 5-28c. The average height Of. the parabolic segment is § of (1590 — 1240), or
233 psi. The average shear stress in the web therefore is

Toe = 1240 + 233 = 1473 pgi
The shearing force in the web is

[P = ATyl Ve = (10 X 1X1473) = 14730 Ib
mmtageofshmwﬁedbythcmbaloncis

14730

Vais =
% Vs = 167000

X 100 = 92.2%

This shows that the flanges are almost ineffective in resisting the vertical shear. If it
is assumed that the total vertical shear is carried by the web alone, the average
shearing stress in the web will be very close to the maximum shearing stress as
computed from Eq. (5-4). Thus

vV 16 000 ;
= — = = 1600
[’ A.,.] T TY) =

This is very close to the computed maximum, 1590 psi. .

Thismethodgivares:ﬂtsthatdoﬁyapproximatethcactualmmum T.
lnmostdesignspedh:ztionsaoodcs,hm,thebcightohhewcbsnotmkm
aStthistancebetweenﬂaﬂms,butisasumedtobcthetotaldepthoftbebm_m.
misptooedmknotsommcasthcptwimsmahod.wtlowdbmbkm
stresses are usually specified in order to compensate.

PROBLEMS

g . s

567. Aﬁmbammwmmwﬂewlwmh@szammwm
40 kN mwmmmuhmmmw
bottom of the section.

568. %mummwﬂ“”f""“’l' d:mm;:mwwd
cl'onuex:(ionir-i("/ﬂz)-"'-‘“"e“""he "

569. Show that the maxim Inmminahamhm'w'

section of net area A is 7 = 2V/A.
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‘ d of 200 Ib/ft is carried on a sim ly s ‘7
: lv dlslnhuud loa 7T o i, POrted
0. A “'jlf:‘\:m!(‘.('linn is as shown In F-lg. P-570, determine the maximum l'fin(l ban. If
::“' ;.,"i.fﬂ;l‘ shearing stress is limited to 80 psi. Assume the load acts “‘f"r‘::»h ° the
a - 1€ ent e
length of the beam. ’
Ans. |7 ¢ i
: !
SIS, % —T }
B
% 8in.% 10 in,
-
4 %
VL. L

L

l—8in. Figure P-570 and P-571
5§71. For a beam with the same Cross secfion as that in.Prob. 570, plot the shearing stress
distribution across the cross section at a section where the shearing force i

V= 1800 Ib.

§72. The T section shown in Fig. P-572 is the cross section of a beam formed by joining
two rectangular pieces of wood together. The beam is subjected to a maximum
shearing force of 60 kN. Show that the NA is 34 mm from the top and that ha =
10.57 X 10° mm?®. Using these values, determine the shearing stress (a) at the neutral
axis and (b) at the junction between the two pieces of wood.

Ans. (a) 3.28 MPa; (b) 3.18 MPa, 31.8 MPa

———200mm ———*

%

'40 mm

100 mm

i 2 ¢

b \ 3 BN
§ § g
¥ PR 2
LR L LI i 3 g1y

- 20mm Figure P-572

573. The cross section of a beam is an isosceles triangle with vertex uppermost, of altitude

hlndbueb.lf,l’isthevenicalsh . : :
ear, show that the maximum shearing stress 1
3V/bh located at the midpoint of the altitude.

< ::::: section shown in Fig, P.574, prove that the maximum horizontal shearing
. ol I/© above or below the NA.

bhe Mieattie SRR D ;.éu"
ANAE = v pldoainn 19 &
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