4.MAXWELL'S INDUCTANCE BRIDGE

Objective:

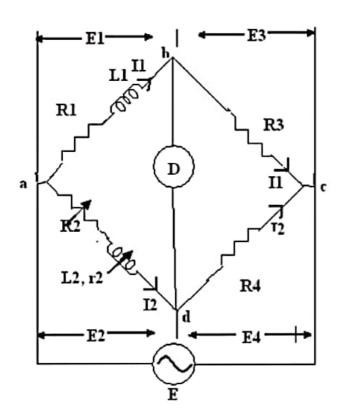
To determine the unknown value of inductance by comparing with a variable standard self inductance using Maxwell's Inductance bridge.

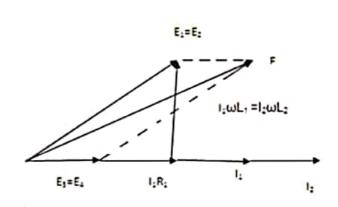
Apparatus:

Software: Lab view software.

Hardware:	Name of the apparatus	Quantity
	Transformer 230/15v	1 No
	Bread board	1 No
	Resistors	4 No
	Variable Resistor	1 No
	Inductors	2 No
	Digital Multimeter	1 No

Theory:

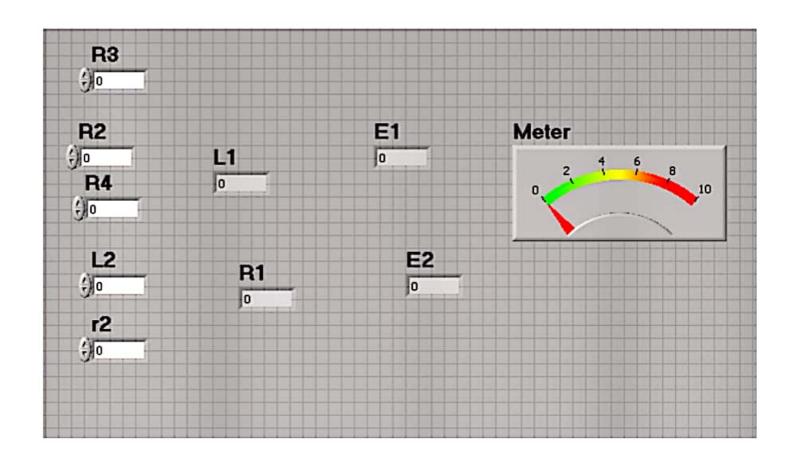

This bridge circuit measures an inductance by comparison with a variable standard self-inductance. The connections and the phasor diagrams for balance conditions are shown below.


Let, L_1 = unknown inductance of resistance R_1 ,

L2 = variable inductance of fixed resistance r2,

R₂ = variable resistance connected in series with inductor L₂,

 R_3 , R_4 = known non-inductive resistances.


At balance, $L_1 = R_3L_2/R_4$, $R_1 = R_3(R_2+r_2)/R_4$.

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Connect the unknown inductance in L₁.
- 3. Connect the multimeter between ground and output of imbalance amplifier.
- 4. Vary R2, from minimum position, in clockwise direction.
- 5. If the selection of R_2 is correct the balance point can be obtained at minimum position.
- 6. Vary R2 for fine balance adjustment.

Observation:

S.NO	R ₂	R ₃	C ₁	$L_1 = R_3 L_2 / R_4$	True value of L ₁

Result:

Actual and practical values of Inductances are found to be nearly equal.