4.MAXWELL'S INDUCTANCE BRIDGE ## Objective: To determine the unknown value of inductance by comparing with a variable standard self inductance using Maxwell's Inductance bridge. ## Apparatus: Software: Lab view software. | Hardware: | Name of the apparatus | Quantity | |-----------|-----------------------|----------| | | Transformer 230/15v | 1 No | | | Bread board | 1 No | | | Resistors | 4 No | | | Variable Resistor | 1 No | | | Inductors | 2 No | | | Digital Multimeter | 1 No | ## Theory: This bridge circuit measures an inductance by comparison with a variable standard self-inductance. The connections and the phasor diagrams for balance conditions are shown below. Let, L_1 = unknown inductance of resistance R_1 , L2 = variable inductance of fixed resistance r2, R₂ = variable resistance connected in series with inductor L₂, R_3 , R_4 = known non-inductive resistances. At balance, $L_1 = R_3L_2/R_4$, $R_1 = R_3(R_2+r_2)/R_4$. ### Procedure: - 1. Connect the circuit as shown in the figure. - 2. Connect the unknown inductance in L₁. - 3. Connect the multimeter between ground and output of imbalance amplifier. - 4. Vary R2, from minimum position, in clockwise direction. - 5. If the selection of R_2 is correct the balance point can be obtained at minimum position. - 6. Vary R2 for fine balance adjustment. ### Observation: | S.NO | R ₂ | R ₃ | C ₁ | $L_1 = R_3 L_2 / R_4$ | True value of L ₁ | |------|----------------|----------------|----------------|-----------------------|------------------------------| ## Result: Actual and practical values of Inductances are found to be nearly equal.