AIM: VERIFICATION OF STATE TABLES OF RS, JK, T AND D FLIP-FLOPS USING NAND & NOR GATES

APPARATUS REQUIRED: IC' S 7400, 7402 Digital Trainer & Connecting leads.

BRIEF THEORY:

- **RS FLIP-FLOP:** There are two inputs to the flip-flop defined as R and S. When I/Ps R = 0 and S = 0 then O/P remains unchanged. When I/Ps R = 0 and S = 1 the flip-flop is switches to the stable state where O/P is 1 i.e. SET. The I/P condition is R = 1 and S = 0 the flip-flop is switched to the stable state where O/P is 0 i.e. RESET. The I/P condition is R = 1 and S = 1 the flip-flop is switched to the stable state where O/P is forbidden.
- JK FLIP-FLOP: For purpose of counting, the JK flip-flop is the ideal element to use. The variable J and K are called control I/Ps because they determine what the flip- flop does when a positive edge arrives. When J and K are both 0s, both AND gates are disabled and Q retains its last value.
- <u>D FLIP -FLOP</u>: This kind of flip flop prevents the value of D from reaching the Q output until a clock pulse occur. When the clock is low, both AND gates are disabled D can change value without affecting the value of Q. On the other hand, when the clock is high, both AND gates are enabled. In this case, Q is forced to equal the value of D. When the clock again goes low, Q retains or stores the last value of D. a D flip flop is a bistable circuit whose D input is transferred to the output after a clock pulse is received.
 - <u>T FLIP-FLOP</u>: The T or "toggle" flip-flop changes its output on each clock edge, giving an output which is half the frequency of the signal to the T input. It is useful for constructing binary counters, frequency dividers, and general binary addition devices. It can be made from a J-K flip-flop by tying both of its inputs high.

CIRCUIT DIAGRAM:

SR FLIPFLOP

D FLIPFLOP

T FLIPFLOP

PROCEDURE:

- 1. Connect the circuit as shown in figure.
- 2. Apply Vcc & ground signal to every IC.
- 3. Observe the input & output according to the truth table.

OBSERVATION TABLE:

SR FLIP FLOP:

CLOCK	S	R	Q_{n+1}
1	0	0	NO CHANGE

1	0	1	0
1	1	0	1
1	1	1	?

D FLIPFLOP:

INPUT	OUTPUT
0	0
1	1

JK FLIPFLOP

CLOCK	S	R	Q_{n+1}
1	0	0	NO CHANGE
1	0	1	0
1	1	0	1
1	1	1	Qn'

T FLIPFLOP

CLOCK	S	R	Q_{n+1}
1	0	1	NO CHANGE
1	1	0	Qn'

RESULT: Truth table is verified on digital trainer.

PRECAUTIONS:

- 1) Make the connections according to the IC pin diagram.
- The connections should be tight.
- 3) The Vcc and ground should be applied carefully at the specified pin only.