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Instructional Objectives 
After reading this lesson, the reader will be able to: 

1. State and prove theorem of Least Work. 
2. Analyse statically indeterminate structure. 
3. State and prove Maxwell-Betti’s Reciprocal theorem. 
  
 

4.1    Introduction  
In the last chapter the Castigliano’s theorems were discussed. In this chapter 
theorem of least work and reciprocal theorems are presented along with few 
selected problems. We know that for the statically determinate structure, the 
partial derivative of strain energy with respect to external force is equal to the 
displacement in the direction of that load at the point of application of load. This 
theorem when applied to the statically indeterminate structure results in the 
theorem of least work.  
 
 
4.2    Theorem of Least Work  
According to this theorem, the partial derivative of strain energy of a statically 
indeterminate structure with respect to statically indeterminate action should 
vanish as it is the function of such redundant forces to prevent any displacement 
at its point of application. The forces developed in a redundant framework are 
such that the total internal strain energy is a minimum.  This can be proved as 
follows. Consider a beam that is fixed at left end and roller supported at right end 
as shown in Fig. 4.1a. Let  be the forces acting at distances 

 from the left end of the beam of span
nPPP ,....,, 21

nxxx ,......,, 21 L . Let  be the 
displacements at the loading points  respectively as shown in Fig. 4.1a. 
This is a statically indeterminate structure and choosing 

nuuu ,...,, 21

nPPP ,....,, 21

aR as the redundant 
reaction, we obtain a simple cantilever beam as shown in Fig. 4.1b. Invoking the 
principle of superposition, this may be treated as the superposition of two cases, 
viz, a cantilever beam with loads  and a cantilever beam with redundant 
force 

nPPP ,....,, 21

aR  (see Fig. 4.2a and Fig. 4.2b) 
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In the first case (4.2a), obtain deflection below A  due to applied loads . 
This can be easily accomplished through Castigliano’s first theorem as discussed 
in Lesson 3. Since there is no load applied at 

nPPP ,....,, 21

A , apply a fictitious load atQ A  as in 
Fig. 4.2. Let be the deflection below au A .  
Now the strain energy sU  stored in the determinate structure (i.e. the support A  
removed) is given by,   
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2211 ++++=   (4.1) 

 
It is known that the displacement  below point  is due to action of  
acting at  respectively and due to Q  at 

1u 1P 1 2, ,...., nP P P

nxxx ,......,, 21 A . Hence,  may be 
expressed as, 

1u
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      (4.2) 1 11 1 12 2 1 1.......... n n au a P a P a P a Q= + + + +
 
where, is the flexibility coefficient at  due to unit force applied at ija i j . Similar 
equations may be written for . Substituting for  
in equation (4.1) from equation (4.2), we get, 

2 3, ,....,  and nu u u ua 2 3, ,....,  and n au u u u

 

1 11 1 12 2 1 1 2 21 1 22 2 2 2

1 1 2 2 1 1 2 2

1 1[ ... ] [ ... ] .......
2 2
1 1     [ ... ] [ .... ]
2 2

S n n a n n

n n n nn n na a a an n aa

U P a P a P a P a Q P a P a P a P a Q

P a P a P a P a Q Q a P a P a P a Q

= + + + + + + + + +

+ + + + + + + + +

a

 (4.3) 

 
Taking partial derivative of strain energy sU  with respect to Q , we get deflection 
at A .  
 

1 1 2 2 ........s
a a an n aa

U a P a P a P a Q
Q

∂
= + + + +

∂
   (4.4) 

 
Substitute  as it is fictitious in the above equation,  0Q =
 

1 1 2 2 ........s
a a a an

U u a P a P a P
Q

∂
= = + + +

∂ n    (4.5) 

 
Now the strain energy stored in the beam due to redundant reaction AR  is, 
 

     
2 3
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Now deflection at A  due to aR  is 
 

     
3

3
ar

a
a

R LU u
R EI

∂
= − =

∂
    (4.7) 

 
The deflection due to should be in the opposite direction to one caused by 
superposed loads , so that the net deflection at 

aR

1 2, ,...., nP P P A  is zero. From 
equation (4.5) and (4.7) one could write, 
 

     r
a

a

UUs u
Q R

∂∂
= = −

∂ ∂
    (4.8) 

Since is fictitious, one could as well replace it by Q aR . Hence, 
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or,  
 

           0
a

U
R
∂

=
∂

              (4.10) 

 
This is the statement of theorem of least work. Where U  is the total strain energy 
of the beam due to superimposed loads  and redundant reaction . 1 2, ,...., nP P P aR
 
Example 4.1 
Find the reactions of a propped cantilever beam uniformly loaded as shown in Fig. 
4.3a. Assume the flexural rigidity of the beam EI to be constant throughout its 
length. 
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There three reactions as shown in the figure. We have only two 
equation of equilibrium viz., 

bba MRR  and ,

∑∑ == 0 and  0 MFy . This is a statically 
indeterminate structure and choosing  as the redundant reaction, we obtain a 
simple cantilever beam as shown in Fig. 4.3b. 

bR

Now, the internal strain energy of the beam due to applied loads and redundant 
reaction, considering only bending deformations is, 
 

     dx
EI

MU
L
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     (1) 

 
According to theorem of least work we have, 
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Bending moment at a distance x  from B , 
2

2wxxRM b −=     (3) 
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Hence,     
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Solving for , we get, bR
 

     wLRB 8
3

=  

 

   wLRwLR ba 8
5

=−=   and 
8

2wLM a −=    (7) 

 
Example 4.2  
A ring of radius R  is loaded as shown in figure. Determine increase in the 
diameter AB  of the ring. Young’s modulus of the material is E  and second 
moment of the area is I about an axis perpendicular to the page through the 
centroid of the cross section. 
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The free body diagram of the ring is as shown in Fig. 4.4. Due to symmetry, the 
slopes at  is zero.  The value of redundant moment is such as to make 
slopes at  zero.  The bending moment at any section 

DC  and 0M
DC  and θ  of the beam is, 

 

    )cos1(
20 θ−−=

PRMM     (1) 

 
Now strain energy stored in the ring due to bending deformations is, 
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Due to symmetry, one could consider one quarter of the ring. According to 
theorem of least work, 
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Integrating and solving for 0M , 
 

     0
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M PR
π

⎛= −⎜
⎝ ⎠

⎞
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     PRM 182.00 =  
 
Now, increase in diameter , may be obtained by taking the first partial derivative 
of strain energy with respect to . Thus,   

Δ
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Now strain energy stored in the ring is given by equation (2). Substituting the value 
of  and equation (1) in (2), we get, 0M
  

   ∫ −−−=
2/

0

2)}cos1(
2

)12(
2

{2 π

θθ
π

dPRPR
EI
RU    (7) 

 
Now the increase in length of the diameter is, 
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After integrating, 
 

    
3 32{ ) 0.149

4
PR PR
EI EI

π
π

Δ = − =    (9) 

 
 

4.3     Maxwell–Betti Reciprocal theorem   
Consider a simply supported beam of span L  as shown in Fig. 4.5. Let this beam 
be loaded by two systems of forces  and   separately   as shown in the figure. 
Let be the deflection below the load point when only load is acting. 
Similarly let be the deflection below load , when only load is acting on the 
beam. 

1P 2P

21u 2P 1P

12u 1P 2P
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The reciprocal theorem states that the work done by forces acting through 
displacement of the second system is the same as the work done by the second 
system of forces acting through the displacements of the first system. Hence, 
according to reciprocal theorem, 
 

212121 uPuP ×=×      (4.11) 
 
Now, can be calculated using Castiglinao’s first theorem. Substituting 
the values of  in equation (4.27) we get, 

2112  and uu

2112  and uu
 

EI
LPP

EI
LPP

48
5

48
5 3

1
2

3
2

1 ×=×     (4.12) 

  
Hence it is proved. This is also valid even when the first system of forces is 

 and the second system of forces is given by . Let 
 be the displacements caused by the forces  only and 

nPPP ,....,, 21 nQQQ ,....,, 21

nuuu ,....,, 21 nPPP ,....,, 21

nδδδ ,....,, 21 be the displacements due to system of forces  only acting 
on the beam as shown in Fig. 4.6.  

nQQQ ,....,, 21
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Now the reciprocal theorem may be stated as, 
 

niuQP iiii ,....,2,1                        ==δ    (4.13) 
 
 

Summary 
In lesson 3, the Castigliano’s first theorem has been stated and proved. For 
statically determinate structure, the partial derivative of strain energy with respect 
to external force is equal to the displacement in the direction of that load at the 
point of application of the load. This theorem when applied to the statically 
indeterminate structure results in the theorem of Least work. In this chapter the 
theorem of Least Work has been stated and proved. Couple of problems is solved 
to illustrate the procedure of analysing statically indeterminate structures. In the 
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end, the celebrated theorem of Maxwell-Betti’s reciprocal theorem has been sated 
and proved. 
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