
NPTEL – Mechanical – Principle of Fluid Dynamics 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 1 of 15 

Module 6 : Lecture 1 
DIMENSIONAL ANALYSIS 

(Part – I) 
Overview 

Many practical flow problems of different nature can be solved by using equations 

and analytical procedures, as discussed in the previous modules. However, solutions 

of some real flow problems depend heavily on experimental data and the refinements 

in the analysis are made, based on the measurements. Sometimes, the experimental 

work in the laboratory is not only time-consuming, but also expensive. So, the 

dimensional analysis is an important tool that helps in correlating analytical results 

with experimental data for such unknown flow problems. Also, some dimensionless 

parameters and scaling laws can be framed in order to predict the prototype behavior 

from the measurements on the model. The important terms used in this module may 

be defined as below; 

Dimensional Analysis: The systematic procedure of identifying the variables in a 

physical phenomena and correlating them to form a set of dimensionless group is 

known as dimensional analysis.  

Dimensional Homogeneity: If an equation truly expresses a proper relationship among 

variables in a physical process, then it will be dimensionally homogeneous. The 

equations are correct for any system of units and consequently each group of terms in 

the equation must have the same dimensional representation. This is also known as 

the law of dimensional homogeneity.  

Dimensional variables: These are the quantities, which actually vary during a given 

case and can be plotted against each other. 

Dimensional constants: These are normally held constant during a given run. But, 

they may vary from case to case.  

Pure constants: They have no dimensions, but, while performing the mathematical 

manipulation, they can arise.   
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Let us explain these terms from the following examples: 

- Displacement of a free falling body is given as, 2
0 0

1
2

S S V t gt= + + , where, 0V  is the 

initial velocity, g  is the acceleration due to gravity, t  is the time, 0andS S  are the 

final and initial distances, respectively. Each term in this equation has the dimension 

of length [ ]L and hence it is dimensionally homogeneous. Here, andS t  are the 

dimensional variables, 0 0, andg S V  are the dimensional constants and 1
2

 arises due 

to mathematical manipulation and is the pure constant.  

- Bernoulli’s equation for incompressible flow is written as, 21 C
2

p V gz
ρ
+ + = . Here, 

p  is the pressure, V  is the velocity, z is the distance, ρ  is the density and g  is the 

acceleration due to gravity. In this case, the dimensional variables are , andp V z , the 

dimensional constants are , andg Cρ  and 1
2

 is the pure constant. Each term in this 

equation including the constant has dimension of 2 2L T −   and hence it is 

dimensionally homogeneous.  

 

Buckingham pi Theorem 

The dimensional analysis for the experimental data of unknown flow problems leads 

to some non-dimensional parameters. These dimensionless products are frequently 

referred as pi terms. Based on the concept of dimensional homogeneity, these 

dimensionless parameters may be grouped and expressed in functional forms. This 

idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the 

theorem is named accordingly.   

  Buckingham pi theorem, states that if an equation involving k  variables is 

dimensionally homogeneous, then it can be reduced to a relationship among ( )k r−  

independent dimensionless products, where r  is the minimum number of reference 

dimensions required to describe the variable. For a physical system, involving k  

variables, the functional relation of variables can be written mathematically as,  

( )1 2, .........., ky f x x x=                                                (6.1.1) 



NPTEL – Mechanical – Principle of Fluid Dynamics 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 3 of 15 

In Eq. (6.1.1), it should be ensured that the dimensions of the variables on the left side 

of the equation are equal to the dimensions of any term on the right side of equation. 

Now, it is possible to rearrange the above equation into a set of dimensionless 

products (pi terms), so that  

( )1 2 3, .........., k rϕ −Π = Π Π Π                                                (6.1.2) 

Here, ( )2 3, .........., k rϕ −Π Π Π  is a function of 2Π  through k r−Π . The required number 

of pi terms is less than the number of original reference variables by r . These 

reference dimensions are usually the basic dimensions , andM L T  (Mass, Length 

and Time). 

 

Determination of pi Terms 

Several methods can be used to form dimensionless products or pi terms that arise in 

dimensional analysis. But, there is a systematic procedure called method of repeating 

variables that allows in deciding the dimensionless and independent pi terms. For a 

given problem, following distinct steps are followed.  

Step I: List out all the variables that are involved in the problem. The ‘variable’ is any 

quantity including dimensional and non-dimensional constants in a physical situation 

under investigation. Typically, these variables are those that are necessary to describe 

the “geometry” of the system (diameter, length etc.), to define fluid properties 

(density, viscosity etc.) and to indicate the external effects influencing the system 

(force, pressure etc.). All the variables must be independent in nature so as to 

minimize the number of variables required to describe the complete system.  

Step II: Express each variable in terms of basic dimensions. Typically, for fluid 

mechanics problems, the basic dimensions will be either , andM L T  or , andF L T . 

Dimensionally, these two sets are related through Newton’s second law ( ).F m a=  so 

that 2F MLT −=  e.g. 3MLρ −=  or 4 2FL Tρ −= . It should be noted that these basic 

dimensions should not be mixed.  

Step III: Decide the required number of pi terms. It can be determined by using 

Buckingham pi theorem which indicates that the number of pi terms is equal to 

( )k r− , where k  is the number of variables in the problem (determined from Step I) 

and r  is the number of reference dimensions required to describe these variables 

(determined from Step II).  
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Step IV: Amongst the original list of variables, select those variables that can be 

combined to form pi terms. These are called as repeating variables. The required 

number of repeating variables is equal to the number of reference dimensions. Each 

repeating variable must be dimensionally independent of the others, i.e. they cannot 

be combined themselves to form any dimensionless product. Since there is a 

possibility of repeating variables to appear in more than one pi term, so dependent 

variables should not be chosen as one of the repeating variable.   

Step V: Essentially, the pi terms are formed by multiplying one of the non-repeating 

variables by the product of the repeating variables each raised to an exponent that will 

make the combination dimensionless. It usually takes the form of 1 2 3
a b c

ix x x x  where 

the exponents , anda b c are determined so that the combination is dimensionless.  

Step VI:  Repeat the ‘Step V’ for each of the remaining non-repeating variables. The 

resulting set of pi terms will correspond to the required number obtained from Step 

III.  

Step VII: After obtaining the required number of pi terms, make sure that all the pi 

terms are dimensionless. It can be checked by simply substituting the basic dimension 

( ), andM L T  of the variables into the pi terms.   

Step VIII: Typically, the final form of relationship among the pi terms can be written 

in the form of Eq. (6.1.2) where, 1Π  would contain the dependent variable in the 

numerator. The actual functional relationship among pi terms is determined from 

experiment.  
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Illustration of Pi Theorem 
 
Let us consider the following example to illustrate the procedure of determining the 

various steps in the pi theorem.   

Example (Pressure drop in a pipe flow) 

Consider a steady flow of an incompressible Newtonian fluid through a long, 

smooth walled, horizontal circular pipe. It is required to measure the pressure drop per 

unit length of the pipe and find the number of non-dimensional parameters involved 

in the problem. Also, it is desired to know the functional relation among these 

dimensionless parameters.  

Step I: Let us express all the pertinent variables involved in the experimentation 

of pressure drop per unit length ( )lp∆ of the pipe, in the following form; 

( ), , ,lp f D Vρ µ∆ =                                                     (6.1.3) 

where, D  is the pipe diameter, ρ  is the fluid density, µ  is the viscosity of the fluid 

and V  is the mean velocity at which the fluid is flowing through the pipe. 

Step II: Next step is to express all the variables in terms of basic dimensions i.e. 

, andM L T . It then follows that 
2 2 3 1 1 1; ; ; ;lp ML T D L ML ML T V LTρ µ− − − − − −∆ = = = = =                (6.1.4) 

Step III: Apply Buckingham theorem to decide the number of pi terms required. There 

are five variables (including the dependent variable lp∆ ) and three reference 

dimensions. Since, 5 and 3k r= = , only two  pi terms are required for this problem.   

Step IV: The repeating variables to form pi terms, need to be selected from the list 

, , andD Vρ µ . It is to be noted that the dependent variable should not be used as 

one of the repeating variable. Since, there are three reference dimensions involved, so 

we need to select three repeating variable. These repeating variables should be 

dimensionally independent, i.e. dimensionless product cannot be formed from this set. 

In this case, , andD Vρ may be chosen as the repeating variables.  

Step V: Now, first pi term is formed between the dependent variable and the repeating 

variables. It is written as, 

1
a b c

lp D V ρΠ = ∆                                                              (6.1.5) 

Since, this combination need to be dimensionless, it follows that 

( )( ) ( ) ( )2 2 1 3 0 0 0b caML T L LT ML M L T− − − − =                                   (6.1.6) 
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The exponents , anda b c  must be determined by equating the exponents for each of 

the terms , andM L T  i.e. 

For : 1 0
For : 2 3 0
For : 2 0

M c
L a b c
T b

+ =
− + + − =
− − =

                                              (6.1.7) 

The solution of this algebraic equations gives 1; 2; 1a b c= = − = − . Therefore, 

1 2
lp D
Vρ

∆
Π =                                                                   (6.1.8) 

The process is repeated for remaining non-repeating variables with other additional 

variable ( )µ  so that, 

2 . . .d e fD Vµ ρΠ =                                                              (6.1.9) 

Since, this combination need to be dimensionless, it follows that 

( )( ) ( ) ( )1 1 1 3 0 0 0e fdML T L LT ML M L T− − − − =                                 (6.1.10) 

Equating the exponents, 

For : 1 0
For : 1 3 0
For : 1 0

M f
L d e f
T e

+ =
− + + − =
− − =

                                            (6.1.11) 

The solution of this algebraic equation gives 1; 1; 1d e f= − = − = − . Therefore,  

2 VD
µ

ρ
Π =                                                              (6.1.12) 

Step VI: Now, the correct numbers of pi terms are formed as determined in “Step III”. 

In order to make sure about the dimensionality of pi terms, they are written as, 

( )( )
( )( )
( )( )

( )( )( )

2 2
0 0 0

1 22 3 1

1 1
0 0 0

2 3 1

l
ML T Lp D M L T

V ML LT

ML T L
M L T

V D ML LT L

ρ

µ
ρ

− −

− −

− −

− −

∆
Π = = =

Π = = =

                        (6.1.13) 

Step VII: Finally, the result of dimensional analysis is expressed among the pi terms 

as, 

2

1
Re

lD p
V V D

µφ φ
ρ ρ

 ∆  = =   
  

                                        (6.1.14) 

It may be noted here that Re is the Reynolds number.  
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Remarks 

- If the difference in the number of variables for a given problem and number of 

reference dimensions is equal to unity, then only one Pi term is required to describe 

the phenomena. Here, the functional relationship for the one Pi term is a constant 

quantity and it is determined from the experiment.  

1 ConstantΠ =                                                      (6.1.15) 

- The problems involving two Pi terms can be described such that  

( )1 2φΠ = Π                                                          (6.1.16) 

Here, the functional relationship among the variables can then be determined by 

varying 2Π  and measuring the corresponding values of 1Π .  
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Module 6 : Lecture 2 
DIMENSIONAL ANALYSIS 

(Part – II) 
 

Non Dimensional numbers in Fluid Dynamics 

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure, 

gravity, surface tension and compressibility. These forces can be written as follows; 

( ) ( )

2 2

2

3

2

Inertia force: .

Viscous force:

Pressure force:

Gravity force:
Surface tension force:
Compressibility force: v v

dVm a V V L
dt
duA A V L
dy

p A p L

m g g L
L

E A E L

ρ ρ

τ µ µ

ρ
σ

= ∝

= ∝

∆ ∝ ∆

∝

∝

                                   (6.2.1) 

The notations used in Eq. (6.2.1) are given in subsequent paragraph of this section. It 

may be noted that the ratio of any two forces will be dimensionless. Since, inertia 

forces are very important in fluid mechanics problems, the ratio of the inertia force to 

each of the other forces listed above leads to fundamental dimensionless groups. 

Some of them are defined as given below; 

Reynolds number ( )Re : It is defined as the ratio of inertia force to viscous force. 

Mathematically,  

Re VL VLρ
µ ν

= =                                                             (6.2.2) 

where V  is the velocity of the flow, L  is the characteristics length, , andρ µ ν  are 

the density, dynamic viscosity and kinematic viscosity of the fluid respectively. If  

Re  is very small, there is an indication that the viscous forces are dominant compared 

to inertia forces. Such types of flows are commonly referred to as “creeping/viscous 

flows”. Conversely, for large Re , viscous forces are small compared to inertial effects 

and such flow problems are characterized as inviscid analysis. This number is also 

used to study the transition between the laminar and turbulent flow regimes.  
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Euler number ( )uE : In most of the aerodynamic model testing, the pressure data are 

usually expressed mathematically as,   

21
2

u
pE
Vρ

∆
=                                                              (6.2.3) 

where p∆  is the difference in local pressure and free stream pressure, V  is the 

velocity of the flow, ρ  is the density of the fluid. The denominator in Eq. (6.2.3) is 

called “dynamic pressure”. uE  is the ratio of pressure force to inertia force and many 

a times the pressure coefficient ( )pc is a also common name which is defined by same 

manner. In the study of cavitations phenomena, similar expressions are used where, 

p∆  is the difference in liquid stream pressure and liquid-vapour pressure. This 

dimensional parameter is then called as “cavitation number”.  

Froude number ( )rF : It is interpreted as the ratio of inertia force to gravity force. 

Mathematically, it is written as,  

.r
VF
g L

=                                                        (6.2.4) 

where V  is the velocity of the flow, L  is the characteristics length descriptive of the 

flow field and g  is the acceleration due to gravity. This number is very much 

significant for flows with free surface effects such as in case of open-channel flow. In 

such types of flows, the characteristics length is the depth of water. rF  less than unity 

indicates sub-critical flow and values greater than unity indicate super-critical flow. It 

is also used to study the flow of water around ships with resulting wave motion.  

Weber number ( )eW : It is defined as the ratio of the inertia force to surface tension 

force. Mathematically,  

 
2

e
V LW ρ
σ

=                                                     (6.2.5) 

where V  is the velocity of the flow, L  is the characteristics length descriptive of the 

flow field, ρ  is the density of the fluid and  σ  is the surface tension force. This 

number is taken as an index of droplet formation and flow of thin film liquids in 

which there is an interface between two fluids. The inertia force is dominant 

compared to surface tension force when, 1eW   (e.g. flow of water in a river).  
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Mach number ( )M : It is the key parameter that characterizes the compressibility 

effects in a fluid flow and is defined as the ratio of inertia force to compressibility 

force. Mathematically,  

v

V V VM
c dp E

dρ ρ

= = =                                                (6.2.6) 

where V  is the velocity of the flow, c  is the local sonic speed, ρ  is the density of the 

fluid and vE  is the bulk modulus. Sometimes, the square of the Mach number is 

called “Cauchy number” ( )aC  i.e.  

2
2

a
v

VC M
E
ρ

= =                                                    (6.2.7) 

Both the numbers are predominantly used in problems in which fluid compressibility 

is important. When, aM  is relatively small (say, less than 0.3), the inertial forces 

induced by fluid motion are sufficiently small to cause significant change in fluid 

density. So, the compressibility of the fluid can be neglected. However, this number is 

most commonly used parameter in compressible fluid flow problems, particularly in 

the field of gas dynamics and aerodynamics.  

Strouhal number ( )tS : It is a dimensionless parameter that is likely to be important in 

unsteady, oscillating flow problems in which the frequency of oscillation is ω  and is 

defined as, 

t
LS

V
ω

=                                                            (6.2.8) 

where V  is the velocity of the flow and L  is the characteristics length descriptive of 

the flow field. This number is the measure of the ratio of the inertial forces due to 

unsteadiness of the flow (local acceleration) to inertia forces due to changes in 

velocity from point to point in the flow field (convective acceleration). This type of 

unsteady flow develops when a fluid flows past a solid body placed in the moving 

stream.  
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 In addition, there are few other dimensionless numbers that are of importance 

in fluid mechanics. They are listed below; 

Parameter Mathematical expression Qualitative definition  Importance 

Prandtl number p
r

c
P

k
µ

=  Dissipation
Conduction

  Heat convection 

Eckert number  
2

0
c

p

VE
c T

=  Kinetic energy
Enthalpy

  Dissipation 

Specific heat ratio p

v

c
c

γ =   Enthalpy
Internal energy

 Compressible flow          

Roughness ratio 
L
ε   Wall roughness

Body length
 Turbulent rough walls           

Grashof number   
( ) 3 2

2r

T g L
G

β ρ
µ

∆
=

Buoyancy
Viscosity

 Natural onvection 

Temperature ratio 
0

wT
T

  Wall temperature
Stream temperature

 Heat transfer 

Pressure coefficient 
( ) 21 2p

p pC
Vρ
∞−

=
Static pressure

Dynamic pressure
 Hydrodynamics,                                                                                          

Aerodynamics 

Lift coefficient 
( ) 21 2L

LC
A Vρ

=  Lift force
Dynamic force

 Hydrodynamics,Aero 

dynamics 

Drag coefficient 
( ) 21 2D

DC
A Vρ

=  Drag force
Dynamic force

 Hydrodynamics,                                                                                                                   

Aero dynamics 
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Modeling and Similitude 

A “model” is a representation of a physical system which is used to predict the 

behavior of the system in some desired respect. The physical system for which the 

predictions are to be made is called “prototype”. Usually, a model is smaller than the 

prototype so that laboratory experiments/studies can be conducted. It is less expensive 

to construct and operate. However, in certain situations, models are larger than the 

prototype e.g. study of the motion of blood cells whose sizes are of the order of 

micrometers. “Similitude” is the indication of a known relationship between a model 

and prototype. In other words, the model tests must yield data that can be scaled to 

obtain the similar parameters for the prototype.  

 

Theory of models: The dimensional analysis of a given problem can be described in 

terms of a set of pi terms and these non-dimensional parameters can be expressed in 

functional forms;  

( )1 2 3, ,.......... nφΠ = Π Π Π                                             (6.2.9) 

Since this equation applies to any system, governed by same variables and if the 

behavior of a particular prototype is described by Eq. (6.2.9), then a similar 

relationship can be written for a model.  

( )1 2 3, ,..........m m m nmφΠ = Π Π Π                                       (6.2.10) 

The form of the function remains the same as long as the same phenomenon is 

involved in both the prototype and the model. Therefore, if the model is designed and 

operated under following conditions,  

2 2 3 3; ............ andm m nm nΠ = Π Π = Π Π = Π                           (6.2.11) 

Then it follows that  

1 1mΠ = Π                                                            (6.2.12) 

Eq. (6.2.12) is the desired “prediction equation” and indicates that the measured value 

of 1mΠ  obtained with the model will be equal to the corresponding 1Π  for the 

prototype as long as the other pi terms are equal. These are called “model design 

conditions / similarity requirements / modeling laws”.   
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Flow Similarity 

 In order to achieve similarity between model and prototype behavior, all the 

corresponding pi terms must be equated to satisfy the following conditions. 

 

Geometric similarity: A model and prototype are geometric similar if and only if all 

body dimensions in all three coordinates have the same linear-scale ratio. In order to 

have geometric similarity between the model and prototype, the model and the 

prototype should be of the same shape, all the linear dimensions of the model can be 

related to corresponding dimensions of the prototype by a constant scale factor. 

Usually, one or more of these pi terms will involve ratios of important lengths, which 

are purely geometrical in nature.  

 

Kinematic similarity: The motions of two systems are kinematically similar if 

homogeneous particles lie at same points at same times. In a specific sense, the 

velocities at corresponding points are in the same direction (i.e. same streamline 

patterns) and are related in magnitude by a constant scale factor.   

 

Dynamic similarity: When two flows have force distributions such that identical types 

of forces are parallel and are related in magnitude by a constant scale factor at all 

corresponding points, then the flows are dynamic similar. For a model and prototype, 

the dynamic similarity exists, when both of them have same length-scale ratio, time-

scale ratio and force-scale (or mass-scale ratio).  

  In order to have complete similarity between the model and prototype, all the 

similarity flow conditions must be maintained. This will automatically follow if all 

the important variables are included in the dimensional analysis and if all the 

similarity requirements based on the resulting pi terms are satisfied. For example, in 

compressible flows, the model and prototype should have same Reynolds number, 

Mach number and specific heat ratio etc. If the flow is incompressible (without free 

surface), then same Reynolds numbers for model and prototype can satisfy the 

complete similarity. 
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Model scales 

In a given problem, if there are two length variables 1l  and 2l , the resulting 

requirement based on the pi terms obtained from these variables is, 

1 2

1 2

m m
l

l l
l l

λ= =                                                            (6.2.13) 

This ratio is defined as the “length scale”. For true models, there will be only one 

length scale and all lengths are fixed in accordance with this scale. There are other 

‘model scales’ such as velocity scale m
v

V
V

λ = 
 

, density scale m
ρ

ρ λ
ρ

 
= 

 
, viscosity 

scale m
µ

µ λ
µ

 
= 

 
 etc. Each of these scales needs to be defined for a given problem.  

 

Distorted models 

In order to achieve the complete dynamic similarity between geometrically similar 

flows, it is necessary to reproduce the independent dimensionless groups so that 

dependent parameters can also be duplicated (e.g. same Reynolds number between a 

model and prototype is ensured for dynamically similar flows).  

  In many model studies, dynamic similarity may also lead to incomplete similarity 

between the model and the prototype. If one or more of the similarity requirements 

are not met, e.g. in Eq. 6.2.9, if 2 2mΠ ≠ Π , then it follows that Eq. 6.2.12 will not be 

satisfied i.e. 1 1mΠ ≠ Π . It is a case of distorted model for which one or more of the 

similar requirements are not satisfied. For example, in the study of free surface flows, 

both Reynolds number Vlρ
µ

 
 
 

 and Froude number V
gl

 
  
 

 are involved. Then, 

Froude number similarity requires, 

m

m m

V V
g l gl

=                                                           (6.2.14) 

If the model and prototype are operated in the same gravitational field, then the 

velocity scale becomes,  

m m
l

V l
V l

λ= =                                                         (6.2.15) 
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Reynolds number similarity requires, 

. . . .m m m

m

V l V lρ ρ
µ µ

=                                                          (6.2.16) 

Then, the velocity scale is,  

. .m m

m m

V l
V l

µ ρ
µ ρ

=                                                          (6.2.17) 

Since, the velocity scale must be equal to the square root of the length scale, it follows 

that 

( )
( ) ( )

3
32
2m mm m

l
l
l

µ ρν λ
ν µ ρ

 = = = 
 

                                             (6.2.18) 

Eq. (6.2.18) requires that both model and prototype to have different kinematics 

viscosity scale. But practically, it is almost impossible to find a suitable fluid for the 

model, in small length scale. In such cases, the systems are designed on the basis of 

Froude number with different Reynolds number for the model and prototype where 

Eq. (6.2.18) need not be satisfied. Such analysis will result a “distorted model” and 

there are no general rules for handling distorted models, rather each problem must be 

considered on its own merits.  

 

 

 

 

 

 

 

 

 

 


