1. DESAUTY'S BRIDGE # Objective: To determine the unknown value of capacitance using Desauty's bridge. # Apparatus: Software: Lab view software. | Hardware: | Name of the apparatus | Quantity | |-----------|-----------------------|----------| | | Transformer 230/15v | 1 No | | | Bread board | 1 No | | | Resistors | 5 No | | | Variable Resistor | 1 No | | | Capacitors | 1 No | | | Digital Multimeter | 1 No | ## Theory: The bridge is the simplest of comparing two capacitances. The connections and the phasor diagram of this bridge are shown below. Let C_1 = Capacitor whose capacitance is to be measured. C₂ = A standard capacitor R_3 , R_4 = Non-inductive resistors. The balance can be obtained by varying either R_3 or R_4 . Resistors R_1 and R_2 are connected in series with C_1 and C_2 respectively. r_1 and r_2 are small resistances representing the loss component of the two capacitors. At balance, $$(R_1 + r_1 + 1/j\omega C_1) R_4 = (R_2 + r_2 + 1/j\omega C_2) R_3$$ From which we have $C_1/C_2=R_4/R_3$. Figure b shows the phasor diagram of the bridge under balance conditions. The angles δ_1 and δ_2 are the phase angles of capacitors C_1 and C_2 respectively. Dissipation factor for the capacitors are $D_1 = \tan \delta_1 = \omega C_1 r_1$ and $D_2 = \tan \delta_2 = \omega C_2 r_2$ $$D_2 - D_1 = \omega C_2(R_1R_4/R_3 - R_2)$$ Therefore, if the dissipation factor of one of the capacitors is known, the dissipation factor for the other can be determined. ### Procedure: - 1. Connect the circuit as shown in the figure. - 2. Connect the unknown capacitor in C1. - 3. Select any value of R3. - 4. Connect the multimeter between ground and output of imbalance amplifier. - 5. Vary R₂, from minimum position, in clockwise direction. - 6. If the selection of R₃ is correct the balance point can be obtained at minimum position. - 7. If that is not the case, select another R₃. - 8. Since, the unknown capacitance whose resistive effect would be made for capacitive form and R₂ is adjusted for minimum output. ### Observation: | S.NO | R ₃ | R ₂ | C ₂ | C ₁ = R ₂ C ₂ /R ₃ | True value of C ₁ | |------|----------------|----------------|----------------|--|------------------------------| # Result: The unknown capacitance is determined using the Desauty's bridge.