16.1 Introduction

A machine part subjected to an axial compressive
force is called a strut. A strut may be horizontal, inclined
ar even vertical. But a vertical strut is known as a column,

pillar or stanchion. The machine members that must be
investigated for column action are piston rods, valve push

rods, connecting rods, screw jack, side links of toggle jack
etc. In this chapter, we shall discuss the design of piston

rods, valve push rods and connecting rods.

Note: The design of screw Jack and toggle Jack 1s discussed in
the next chapter on ‘Power screws’.

16.2 Failure of a Column or Strut

It has been observed that when a column or a strut is
subjected to a compressive load and the load is gradually

increased, a stage will reach when the column will be
subjected to ultimate load. Beyond this, the column will fail
by crushing and the load will be known as crushing load.
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[t has also been experienced, that
sometimes, a compression member does not
fail entirely by crushing, but also by bending
i.e. buckling. This happens in the case of long
columns, It has also been observed, that all
the *short columns fail due to their crushing.
But, if a **long column is subjected to a
compressive load, it is subjected to a
compressive stress, If the load is gradually
increased, the column will reach a stage,

when it will start buckling. The load, at < -
which the column tends to have lateral Depending on the end conditions, different columns
have different crippling loads

displacement or tends to buckle is called
buckling load, critical load, or crippling load and the column is said to have developed an elastic
instability. The buckling takes place about the axis having minimum radius of gyration or least moment
of inertia. It may be noted that for a long column, the value of buckling load will be less than the
crushing load. Moreover, the value of buckling load is low for long columns, and relatively high for

short columns.

16.3 Types of End Conditions of Columns

In actual practice, there are a number of end conditions for columns. But we shall study the
Euler's column theory on the following four types of end conditions which are important from the
subject point of view:

1. Both the ends hinged or pin jointed as shown in Fig. 16.1 (a),

2. Both the ends fixed as shown in Fig. 16.1 (b),

3. One end is fixed and the other hinged as shown in Fig. 16.1 (¢), and

4. One end is fixed and the other free as shown in Fig. 16.1 (d).
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Fig. 16.1. Types of end conditions of columns.
16.4 Euler's Column Theory

The first rational attempt, to study the stability of long columns, was made by Mr. Euler. He
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derived an equation, for the buckling load of long columns based on the bending stress. While deriving
this equation, the effect of direct stress is neglected. This may be justified with the statement, that the
direct stress induced in a long column is negligible as compared to the bending stress. It may be noted
that Euler's formula cannot be used in the case of short columns, because the direct stress is
considerable, and hence cannot be neglected.

16.5 Assumptions in Euler's Column Theory
The following simplifying assumptions are made in Euler's column theory :
1. Initially the column is perfectly straight, and the load applied is truly axial.
2. The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic, and thus obeys Hooke's
law.

The length of column is very large as compared to its cross-sectional dimensions.
The shortening of column, due to direct compression (being very small) is neglected.
The failure of column occurs due to buckling alone.

The weight of the column itself is neglected.

Nppe

16.6 Euler's Formula

According to Euler’s theory, the crippling or buckling load (W) under various end conditions
is represented by a general equation,

C::-‘-’Ef:cf:zEAk’

We= "7 7 e (20 T= AR
Cn"E A
T k?
where E = Modulus of elasticity or Young's modulus for the material of the column,

A = Area of cross-section,
k = Least radius of gyration of the cross-section,
I = Length of the column, and

C = Constant, representing the end conditions of the column or end fixity
coefficient.

The following table shows the values of end fixity coefficient (C) for various end conditions.

Table 16.1. Values of eand fixity coefficient (C).

5. No. End conditions End fixity coefficient (C)
1 Both ends hinged 1
Z Both ends fixed 4
3 One end fixed and other hinged 2
4 One end fixed and other end free 0.25

Notes : 1. The vertical column will have two moment of inertias (viz I and I). Since the column will tend to
buckle in the direction of least moment of inertia, therefore the least value of the two moment of inertias s to be
used In the relation.

2. In the above formula for crippling load, we have not taken into account the direct stresses induced In the
material due to the load which increases gradually from zero to the crippling value. As a matter of fact, the
combined stresses (due to the direct load and slight bending), reaches its allowable value at a load lower than

that required for buckling and therefore this will be the limiting value of the safe load.
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16.7 Slenderness Ratio

In Euler's formula, the ratio // kis known as slenderness ratio. It may be defined as the ratio of
the effective length of the column to the least radius of gyration of the section.

It may be noted that the formula for crippling load, in the previous article is based on the
assumption that the slenderness ratio // kis so large, that the failure of the column occurs only due to
bending, the effect of direct stress (L.e. W/ A) being negligible.

This equipment is used to determine the crippling load for axially loaded long struts.

16.8 Limitations of Euler's Formula
We have discussed in Art. 16.6 that the general equation for the crippling load is

 Cr*EA
We= o7
(1/k)
Crippling stress,
W, Cn’E

or

o =
“ A (URF

A little consideration will show that the crippling stress will be high, when the slenderness ratio
is small. We know that the crippling stress for a column cannot be more than the crushing stress of the
column material. It is thus obvious that the Euler’s fromula will give the value of crippling stress of
the column (equal to the crushing stress of the column material) corresponding to the slenderness
ratio. Now consider a mild steel column. We know that the crushing stress for mild steel is 330 N/mm?

and Young's modulus for mild steel is 0.21 = 10° N/mm?®.

Now equating the crippling stress to the crushing stress, we have

+ ol
Cn f =330
(I1k)
1% 9.87 % 0.21 % 10"
(17 ky? =330 ... Taking C=1)

®
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: 1/ k = 79.25 say 80

Hence if the slenderness ratio is less than 80, Euler’s formula for a mild steel column is not
valid.

Sometimes, the columns whose slenderness ratio is more than 80, are known as long columns,
and those whose slenderness ratio is less than 80 are known as short columns. 1t is thus obvious that
the Euler’s formula holds good only for long columns.

16.9 Equivalent Length of a Column
Sometimes, the crippling load according to Euler’s formula may be written as
nEI
< LE
where L is the equivalent length or effective length of the column. The equivalent length of a given

column with given end conditions is the length of an equivalent column of the same material and

cross-section with hinged ends to that of the given column. The relation between the equivalent
length and actual length for the given end conditions is shown in the following table.

Table 16.2. Relation between equivalent length (L) and actual length (/).

S.No. End Conditions Relation between equivalent length (L) and
actual length (1)
. Both ends hinged L=
|
3. One end fxed and other end hinged L= N7
1. One end fixed and other end free L.=21
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16.10 Rankine's Formula for Columns

We have already discussed that Euler's formula gives correct results only for very long columns.
Though this formula is applicable for columns, ranging from very long to short ones, yet it does not
give reliable results. Prof. Rankine, after a number of experiments, gave the following empirical
formula for columns.

1
W, W .
where W_ = Crippling load by Rankine’s formula,
W, = Ultimate crushing load for the column =& _x A,

2
n" E
W = Crippling load, obtained by Euler’s formula = I

A little consideration will show, that the value of W, will remain constant irrespective of the
fact whether the column is a long one or short one. Moreover, in the case of short columns, the value
of W will be very high, therefore the value of 1 / Wj; will be quite negligible as compared to 1t/ W[..
It is thus obvious, that the Rankine's formula will give the value of its crippling load (ie. W)
approximately equal to the ultimate crushing load (i.e. W.). In case of long columns, the value of W
will be very small, therefore the value of 1 / W; will be quite considerable as compared to 1/ W.. Tt
is thus obvious, that the Rankine's formula will give the value of its crippling load (ie. W)
approximately equal to the crippling load by Euler’s formula (ie. W;.). Thus, we see that Rankine's
formula gives a fairly correct result for all cases of columns, ranging from short to long columns.

From equation (), we know that

1 _ 1, 1 Wt
w:'r WC ”15 We x H‘%
WexWe _ W
Wer = We + Wi 1+ We
We
Now substituting the value of W and W}, in the above equation, we have
- a.x A - g.x A ' (e T=AK)
14 SXAXL gy O AL
nEI nE Ak

a.x A _ Crushing load

LY LYV
1+ 1+
’ [ k) ""( k]
where o_ = Crushing stress or yield stress in compression,
A = Cross-sectional area of the column,

', Gr
a = Rankine’s constant = _E
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L = Equivalent length of the column, and
k = Least radius of gyration.

The following table gives the values of crushing stress and Rankine’s constant for various
materials.

Table 16.3. Values of crushing stress (ﬂc} and Rankine's constant (a)

for various materials.
= oI'I.'
S.No. Material o, in MPa a= 2F
1
1. Wrought lron 250 3000
1
2. Cast Iron 550 1600
1
3. Mild steel 320 7500
1
1. Timber 50 750

16.11 Johnson's Formulae for Columns
Prof. ].B. Johnson proposed the following two formula for short columns.
1. Straight line formula. According to straight line formula proposed by Johnson, the critical

or crippling load is
20,(L o, L
- Ale,-—L|= I_|=4|0,-G|=
Wer = [f an (k] 3C x {-‘ q(k}]

where A = Cross-sectional area of column,

o, = Yield point stress,

0 20, o,
'~ T3g V3CE

= A constant, whose value depends upon the type of material as well as
the type of ends, and

— = Slenderness ratio.

k
If the safe stress (W / A) is plotted against slenderness ratio (L / k), it works out to be a straight
line, so it is known as straight line formula.
2. Parabolic formula. Prof. Johnson after proposing the straight line formula found that the
results obtained by this formula are very approximate. He then proposed another formula, according
to which the critical or crippling load,

A 1 ° (L)
w = Ax0o, 4Cr|:2£(k] with usual notations.
If a curve of safe stress (W_ / A) is plotted against (L/ &), it works out to be a parabolic, so it is

known as parabolic formula.

Fig. 16.4 shows the relationship of safe stress (IW_/ A) and the slenderness ratio (L / k) as given
by Johnson's formula and Euler’s formula for a column made of mild steel with both ends hinged
(ie C=1), having a yield strength, a, = 210 MPa. We see from the figure that point A (the point of
tangency between the Johnson's straight line formula and Euler's formula) describes the use of two
formulae. In other words, Johnson's straight line formula may be used when L/ k < 180 and the
Euler's formula is used when L/ k> 180.
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Similarly, the point B (the point of tangency between the Johnson's parabolic formula and Euler's
formula) describes the use of two formulae. In other words, Johnson's parabolic formula is used when
L/ k< 140 and the Euler's formula is used when L/ k> 140.

Note : For short columns made of ductile materlals, the Johnson's parabolic formula Is used.
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Fig. 16.4. Relation between slendeness ratlo and safe stress.

16.12 Long Columns Subjected to Eccentric Loading
In the previous articles, we have discussed the effect of loading on long columns. We have
always referred the cases when the load acts axially on the column (Ze. the line of action of the load

coincides with the axis of the column). But in actual practice it is not always possible to have an axial
load on the column, and eccentric loading takes place. Here we shall discuss the effect of eccentric

loading on the Rankine's and Euler's formula for long columns,
Consider a long column hinged at both ends and subjected to an eccentric load as shown in

Fig. 16.5.

Fig. 16.5. Long column subjected to eccentric loading.
Let W = Load on the column,
A = Area of cross-section,
e = Eccentricity of the load,
Z = Section modulus,
¥, = Distance of the extreme fibre (on compression side) from the axis of the
column,
k = Least radius of gyration,
I = Moment of inertia = A&,
E = Young's modulus, and
I = Length of the column.
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We have already discussed that when a column is subjected to an eccentric load, the maximum
intensity of compressive stress is given by the relation
w M
[s] = —+ —
max A z
The maximum bending moment for a column hinged at both ends and with eccentric loading is

given by

1 | W 1 w
MZWE.SECE E-:W[e.seczk FA (v I=ABD)
W.esec ! w
w 2kY EA
N O = — +
mEx A Z
W.e y,. sec ! W
W 2k\ E.A
=—+ w0 Z= Ty, = ARy)

I

‘W ey, L W
— |1+ ——sec — |—
A IS 2kYVEA
... (Substltuting / = L, equivalent length for both ends hinged).
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