DETERMINATION OF X_d AND X_q OF SALIENT POLE SYNCHRONOUS MOTOR

AIM:

To determine the direct axis reactance X_d and quadrature axis reactance X_q by conducting a slip test on a salient pole synchronous machine.

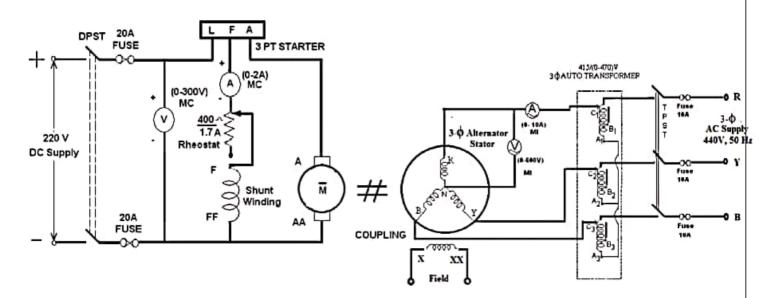
APPARATUS REQUIRED:

Sl. No.	Equipment	Туре	Range	Quantity
1	Voltmeter	МІ	(0-300)V	1 no
2	Ammeter	MI	(0-5)A	1 no
3	Rheostat	Wire-wound	400 Ω /1.7A	1 no
4	Tachometer	Digital	****	1 no
5	Connecting Wires	****	****	Required

NAME PLATE DETAILS:

DC Motor (prime mover)	3- ф Alternator			
KW :	Power Rating:			
Voltage:	PF :			
Current:	Line voltage:			
Speed :	Speed			
Exctn : Shunt	Exctn Voltage:			
Voltage:	Rated Current :			
Field current::				

3- φ Auto transformer Details:


Input Voltage: _____(Volt)

Output Voltage: _____(Volt)

Current:_____(Amp.)

Frequency: _____(Hz)

CIRCUIT DIAGRAM:

PROCEDURE:

- Connections are made as per the circuit diagram.
- Initially set field regulator, 3-φ variac at minimum position and TPST switch open.
- The DC motor is started slowly by sliding starter handle and it is run at a speed slightly less than the synchronous speed of the alternator.
- 4. Close the TPST switch.
- With field winding left open, a positive sequence balanced voltages of reduced magnitude (around 25% of rated Value) and of rated frequency are impressed across the armature terminals.

- The prime mover (DC motor) speed is adjusted till ammeter and voltmeters pointers swing slowly between maximum and minimum positions.
- Under this condition, readings of maximum and minimum values of both ammeter and voltmeter are recorded

CALCULATIONS:

$$X_d = \frac{\text{maximum armature terminal voltage per phase}}{\text{minimum armature armature current per phase}}$$

$$Xq = \frac{\text{minimum armature terminal voltage per phase}}{\text{maximum armature current per phase}}$$

Note:

- 1. When performing this test, the slip should be made as small as possible.
- During Slip test, it is observed that swing of the ammeter pointer is very wide, whereas the voltmeter has only small swing.

TABULAR COLUMN:

Sl no.	Speed	Vmax (V _L)	Vmin (V _L)	Imax (I _L)	Imin (I _L)	X_d	Xq

RESULT: