where @q, Qe ®a arc the quoticnts in
cach step of the division
M(5)
N AL 4 .
These coetficients must be ﬂz.:s. when
the 7&503:_ PE) IS Hurwitz. Stonof
(d) 1f the polynomial .Ca...m& the con I_ N_.S_.E
Hurwitz, the 7&535_ then is ﬁ 2
to an even multiplicative ?n.o.q W(s); ii£s
P(=W(PE and P(s) is Hurwitz,
P, (s) must be Hurwitz.

(¢) If the ratio of the polyn
derivative (P () gives B
fraction expansion with all positive
coeffidents, then P(s) is Hurwitz. In case
the polynomial is either only even or E_G
o, the method of continued fraction is
not possible and this method is then

benefidal.

omial P(s) and its
a continued

" The ‘definition of the Hurwitz polynomial

presented in this text was developed by Brune and
later illustrated by Van Valkenburg and Kuo. This
definition refers the criteria of the polynomial to be
Hurwitz bounded by characterisation of poles of
the system. Guillemin as well as Van Valkenburg’
had also bounded the criteria of polynomial to be
Hurwitz by characterisation "of zeros of the
polynomial as mentioned below : ¥

The characterisation of Hurwitz uow:oiﬁ._ by
zeros states that a ‘real polynomial. P(s).[l.e,’
polynomial with real coefficients] is termed as 2’
Hurwitz if all its zeros lie in the loft half plane (ie,
w.»@ <0) with those on the imaginary axis being
m:sw._m (P (s) is said to be strictly Hurwitz provided
Joaxis «m_dm.&m excluded i.e., all the zeros oecur in’
Hﬂmﬁ”ﬁhnm of S plane only (Re(s) <0))-It may be’
Lo e .5 4_00 approaches result in identical
.wmvaﬂmr“~ MM.M&QWE& memwmﬂ.m:bnmon _umim '
€ ratio i
i »:&wmmm M.Nﬁ_oa_mw and the

5 f oles o
%.sﬂsm the stability of the Fo eumorderto

b A\
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y 21,
e GIVEN POLYNOMIAL Fop

HURWITZ CHARACTER

physical Testing
The necessary but not sufficient con,
P(s) to be Hurwitz are as follows :

H.>= .rm. n.omBDm:G o::o _uo_w:oa_.& 4
be positive and real. gy

ditiong 4

2. There must not be any power o it
between the highest degree 5“_55,_
degree of the polynomial (unJegg 9m_os1
nomial is completely even or P Poly. ,,
odd). Pletg, |

Analytic Testing
The necessary and sufficient condj o £
to be Hurwitz is as follows : T P

The quotients (a,,0,...) in the COntingeg
; i M(s)
fraction expansion of Z(s)|=—2"7
P A vﬁ Zﬁmu Ermﬂm EE

represents the even part of P(s) and N(s) the odd
part] must be real and positive. However if due o,
common factor between: M(s) and N(s), i the
‘continued fraction method is ?.mSmEz:.
terminated, then the quotients in the continueq
P(s)

P'(s)’

fraction expansion of  (s) T- (s)= P'(g

being the first derivative of 13\1_ must be all real
and positive.

‘polynomial is m:rn._. only even or only odd.: 13

ExampLe mu.wx\mnn» whether the polynomial

5+ 95% 1757 4+ 52 4 45
is Hurwitz or not.

% Use 'of i y(s) is ‘also suitable if the (given

SoLution.
P(s)=s® +95* 4753 462 445
=M(s)+ N(s)
where M(s)=9s* 4+ 52 2 (1+95?)

N()=s®+75% + 45=s(a 4752 +5%

/

z€ro
ction of i
ﬂ:& proves that the given polynomial is not Hurwite.

ssive Networks 841

nm~n¢t
\\\I\\ij u*ﬁ&?ﬁ.mu of Po
RE OF T \l\l\\
4+ PROCEDURE OF TESTING qf NG £t

2

AT

T M)

sV a7t 44
T s@st+1)
Jt is obvious that the above function Z(s) has a
2t the origin. The quotient of the continued
N(s)/ M(s) also gives negative value.

Let 95t +5

[s=0].

o F 21.3 Check whether the polymomial

Exaunte 21.3 Chect RRier TP
5,5 +st -2 +ds —¢* + s+ 1is Hurwtz or pot,
§

SoLUTION. By inspection it is evident that the
ﬂe_u..so_:_u._ is not Hurwitz because the

given ) i
coeffidents of the s and s° term are negative.
ExaneLe 21.4 icate, with proper reasoning whech of
the follow polynomials are Hurwitz :

(a) s2+ds+10
Q) st st + 25743542
© s*+11s7 +3957 + 515420
SOLUTION. (a) P(s)=s +4s+10
The given polynomial is Hurwitz because It is
a quadratic, with no missing term and all its
coefficients are of positive sign.
) P()=s'+5>+257 +3s42
?:mvnm. +25242
N(s)= s> +3s
M(s) s* +25% +2
N(s) s*+3s
Using continued fraction method, the function
M(s)
N(s)

LZ(s)=

Z(s)= is tested as 3:0.:3 :

£ +3s)st + 22+ 2(s

s'+ 34
o 42)S+3s(-s
S -2
[
55) -7+ 2(-3
_¢
ngu-.mlua
5s

Since the continued fraction contains :mm&...in
quotients hence the given polynomial is not Hurwitz.

€ Plsyus® alle’ e Wisd «%1as20

« Miyi« M)
i-- -u&-u . Un.‘»v_:-. - 510

———

Xin

My

Let us now use the contimmed fraction matha!
as shown below :

1 o S0 et o 2 o 0 >

-...a‘_..
133
: n
w..og:_._.:-mWJ.
10
137 _!-
» b5 o)
J.f.l-__an.u.h:j-. *
1% 1" = R
¥
B § SO
LE tul.
L T R T
M
g
189

Since the continued fraction has all -ve

quotients hence the given polynomial is Hurwite.
Exavers 2.3 ¢termine whether the given polymomsad

(s 2)(s% v 4s+6) (8% ¢ 39+ 2)is Huruntz v mot.

SoLUTION. The palynomial Is given in form of
factors. No further factorisation is nerded. Also ad
the factors are Hurwitz. Thus the given polynomial

is Hurwitz.
ExauptE 21.6 Check whether the following polymomass
are Hurwitz or not :

(a) s*+75° +4s7 4 18546

() s 5l 657 +3546

(c) stes?e2s7edsel

SoLuTION. (a)

P(s)= s 4768 + 45T s 185086

= M(s)+ N(s)

where M(s)=s' + 45 «6

and N(s)=7s + 18

RAadwrEN

Scanned with CamScanner




- i thod, from
;o continued fraction me
Using 20 M(s)
S)=———"
G N(s)
Nme_u:u.¢tuvaa.w
u..»_lmuhnn
08 . 9
Jll;um,,::?._o
u%...w.mluu
57 . 10s* _ 50
B B oY
w¢
7
57 57
@y!ﬂuﬁlam
57

-=s
5

x

Since the continued fraction contains the negative
quotient, hence the given polynomial is not Hurwitz.

(B) P(s)=s*+5> +65% +35+6=M(s)+ N(s)
where  M(s)=s'+65+6; N(s)=s>+3s

r&. us now perform the continued fraction
mxvmmmsn of P(s) by dividing M (s) by N (s) and
then inverting and dividing again as given below :

vu+w:u.+am»+m«n

s'+ 352

w%+m:u+u:.mn

il

Gince all the quotient terms of the

fraction expansion are positive, P(s) i :n_”ﬁ.l
&

© p(s)=st+s’ +252 +@+Hu§3+

where M(9)=s*+25"+1  N(9=g3,
Using the method om continued 539_.
The continued fraction yields

Ny

%+¢mvu.+uuu+~Au
st + 452

|~uh+:.m+a:|.~u.

|

9s 2
2 ) =2 +:..mu
- 252

_
9s
1) =(%
V~—~
.2
2

-

x

The given polynomial is not Hurwit; because
of presence of the negative quotient in
continued fraction.

52+ 11s+6 is Hurwitz or not.

SOLUTION. Separating P (s) into odd and m_hn_

parts,
M(s)=s> +11s; N(s)=6s2+6
The continued fraction expansion of M(s)/ N(s)

is obtained as follows :

£42s
67+6) P 4115 (1
uvuuu*mawu .-Amm
382 £+ o5
Toeed sn:m;ﬂmm
5
ot 652
: I
The conti -
ontinued fraction js then 6) 10s( mmu
P(s)= 1
(s) M g 105
.1
3 wm+~ )
= Since g :
s e quotients in i ction
: method the continued fra

Hurwit,

e all positive, the polynomial is

Check whether a polynomial expressed g5

:/_ is-of Passive Networks 843

synthe®
\\\\\H!:.EE the polynomial s° + 5% + s is Hurmitz or mot.

form
Hw.a_\
P(s)=5s* +3s7+1 b
1.6
P(s) sS+s’+s

Let €3nﬁ.gummk+um~+~
133@& with continued fraction method as shown below :

| andletusnow

st eade ) Sefeay
a.mm.m

muuom:u-.0umozwu

5+ 104
2 4 2
-78 :msuom.-ﬁlwuh

2, 2
FL

6., _~ -8
m: -7¢ + 1( i

-74

In the continued fraction of the above function, the third and fourth quotients are negative. Hence,

given polynomial is not Hurwitz.

EXAMPLE 21.9 Test whether the following functions are Huruntz or not :
() s® +3s% 435 + 457 +5+1
(i) s* +3s2 +2
SOLUTION. (i) .
Emvnmu,&u. +3s3 445t +s+1= M(s}+ N(s)
Where Eﬁmvumm‘+am~+:
N(s)=s® +3s° +5
N(s)
M(s)

Let Z(s)=

£ 4l.
ExAMEL C p(sh(=s" + s> +3) consists of only odd functions, s a result of which it is not possible to
sot the continued fraction expansion. Let us then take the derivative of P(s). Assume derivative of P(s)

[~ degree of N(s) is higher than that of M(s)]

Wm~w»IN
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sy/n'h,——-—
/Ay/ﬁ‘ﬁrs Find the range of valucs of m in P(s), so

{ P(s) 18 Hurwitz.

tha 3
P(s)= 7» ts +ms“+s+2_

.\-.-.urm
SOLUTION
P(s )__')\ 4-:,1 +m¢" +5+2

= ('h + st +2)+(s2 +8)=M(s) + N (s)
Applying the continued fraction expansion,

¢ +5).5 + ms? +2(25

264 +2¢°

(m-2)+2) 8 +s( —
m-=2

- 2 A-
. S+ g
m-2

o)

“The quotients of the continued ‘fra_‘cﬁ’on
expansion would be+ve only when m>2 and

1> ie, m>4.

m-

Thus the range is m> 4 for P(s) to be Hurwitz.

@wo’smve REAL (PR) FGNCTIONS

It has already been known to us that the driving
point impedance function [Z (s)] as well as the

driving point admittance function [Y (s)) of one port

network can be represented in the form of
“A(s
" B(s)

- n-
et a
"05 +a,s +. -

bO s™ + bl Sm—l +..--+b,-",1 S"’bm

The function F(s) is called a positive real (or PR)
function” iff |

(@) F(s) is real for s real

(b) B(s) is Hurwitz polynomial

(¢) 1f F(s) has poles on (jo) axis, the poles are
simple and the residues thereof are real and
posifive.

(d) Real F(jw)20 for all values of &

lie. when real part of is greater then zero,
Re(F (s)=a>0]

N

To Hlustrate the concept of PR function in
practical circuit theory, let us analyse the following
examples of PR functions :

(a) Let F(s)[= Ls, L being real and positive] be
a PR function. If F(s) denotes an impedance
function, L becomes an inductance.

(b) Let F(s)[= R, R being real and positive] be
-another PR function. F(s) being denoting
an impedance, R is a resistance.

© F(s)= [ K being real and posmve} be a

PR function, when s is real, F(s) is real.
Also when Re(s)>0, Re F(s)>0[=o]

r'le.,Re(EJ= K.o
== 08

‘\
o"+ @

If F (s) represents an impedance, the corres-
ponding element becomes a capacitor of 1/K Farads.

-‘We thus find that the passive impedantes are
all PR functions. Similarly, the admittance functions are
also PR functions. Also, all driving point immittances of
passive networks are PR functions.

>0

il 21.5.1 Properties of PR Functions

A(s)

B(s)

The properties of PR functions are as below

(i) Both A(s) and B(s) polynomials are

/ Hurwitz. They may have factors of the
form (s> + w° ) i.c., the poles and zeros of a
PR function cannot have +ve real parts ve,,
they cannot be in the nght half of the
s-plane. Only simple poles with sve real
residues can exist on the jo axis.

(i) The highest and lowest powers of A(s) and
B(s) differ by wunity. This condition
prohibits multiple pole and zeros at 5=«
and at s =0 respectively.

Let F(s)=

(1) 1f F(s) is a PR function, the reciprocal of
F(s)'s also a PR functicn (this implies that if
the driving point impedance s a PR
function, the driving point admittance is
also a PR function).

(v) The sum of PR functions is also a PR

" Y function (though the difference of two PR
functions is not necessanly a PR tunction)

) 3 X aak »
N A el m"dmhp,.mwlmvﬂmd:wuhpdu«rulputi-\n!kdnpurmmlﬁ—t“-

¥
|
/A
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=

: GOLUTION: Let us apply the tests of PR function :

() Since all the coefficients of the poly-
nomials in the numerator and denomi-
nator are +ve hence F(s) is real if s i reql.

(i) [t is also evident that the pole of the
function lies on the left half of the
[the zeros, (=5 V21) also lie
half of the s plane].

(iii) Re[F(j )]
" -_(,)2+10jm+4 -jo+2
= LL jo+2 -jo+2

[_2 o +2Oj(u+8+j(o3 +10 @2 -4jmjl

s-plane
on the-left

L w* + 4

]
—
o

82 +16j 0+ ] o +8
i @ +4

_rel @ @ +8)+ j (@ +16 w) 8w’ +8
w° +4

©* +4
Since for all values of w, Re[Z (j w)] 20.
The function Z(s) is thus a PR function.

ExAMPLE 21.2,1// Check the positive realness of the
function

5% + 25+ 20
Y()=—————
& s+10

SOLUTION. Let us apply the tests of PR function
to the given function.

In the function Y (s), all the quotient terms are
real and for s to a real quantity Y (s)is real. Also the
poles and zeros are on the left half of the s-plane for
the given function.

_Next, let us see the positive realness of the
given function in the (j o) domain. -

Re[Y(j m)=ReF(}. w)z +2(jo)+20|
. jw+10

_Re——mz +2 jw+20 -jm+10,]
| jo+10 -jo+10

+ jo + 20 - 20 jo - 10 ®* + 20 jo + 200
e w? + 100

—8w? +200 -

- pre————
=

w? +100

[-8w? +200+j &
w? +100

Since for all values of o, Re[Y(jw)] 0 ic., this

test certifics that the function is not a positive real
function,

@Mﬁ@/\ Junction is given by

34 e ]
Z(v):'\ + 55 +9s5+3

———— e

s 4yt v 7sa 0
Find the positive realess of the function.

SOLUTION, Let us proceed with the testing of the
function for positive realness —

(1) Since all the coefficients in the numerator
and denominator are having +ve values
hence, for real value of s, Z (s) is real.

(i) To find whether the poles are on the left
half of the s-plane, let us apply the
Hurwitz criterion to the denominator
using continued fraction method.

Let P(s)=s" +452 +75+9=M, (s)+ N, (s)
where M, (s)=4s> +9 and N, (s)=5> +7s.

Application of continued fraction method is
shown below.

Ny(s) s°+7s
W) mi s
M) 45% 49

4sz+9)s3+7n(-§

s+ L
4
19 16
2y 462 et
rERRRRA ST
4
T 195 19
0 ) e (o
. e
195
4

x \

Since all the quotients are +ve in the continued
fraction expansion, hence, the polynomial of Z(s) in
the denominator is Hurwitz.

(ifi) In order to find whether Re Z (j w) 20 for all

o, let us adopt slightly more mathematical
manipulation.

Z(s)= ﬂl_(i).f,ﬁ '_.(:')
M, (s) + N, (s)

Let
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impedance G521,
s @ jo axis OF SYNTHESIS
. Step 1

The given function

i ..(2120) e either in form of Z

R function

: : ; s f
substitute jo for s in the expression ot firgy

being a PR gy, ..

(s) or Y(s). In ‘:ilun, it

A
\

uﬁ {
L9

S/"mhe,/

i of possive Matwurby
8 oo m—h

papop
2L

On the other hand, if

admittance
 capacitor.

eries L; C,

rationalise and find the real part of
Find the minimum value of the
(ReF(j)]y, [This is donc by differenyy,
part of the rationalised function with
and equating it to zero and obtainjn
for which the real part of the fun
minimum. Substituting the valye

of the

b

n,

C
8 1hc va]u?
ction ,

ea|

the fuor::,"",

Yy

Yy}

7T Z1 Z, }',n droyany  prant /( .
RN p 10t it Yafian?, 5y
u .a)t,v,.,vll,‘ y 8 vas
0 - 7 ok
7(s) = . ? A £ VAL Rosiva s retnett
Z() bl_',;hzc t...%b, 8 ; oy
3 . ¢ Syt B -
o ARG, G Y £
I nzdwl&l'm' i v 7 Sy s Bisit o
by 0 Tteemben grdipta s B e rigreen s SR
retnander

s ol 2172
z()=",

b, vbyss.vb, 47 i
1t can be obeerved that Z(s) wiil have a pole st
5:0' .
In the former cawe, if the origimal funetion s

CotTiensinates griprens
ZUsyorii voryr 5 il

of & sfies sedten

trf Yy dvriom of %

Sevexsizares.

e
o rovcr R B HTATF TER

R O A & e o il

enf 3 Elvar £t B Lenwrnssrad
o rasreeraien of TT, Ty o

part
Re|F (jo))min-]-

. Step 2
e function

If the functions given in form,
[Re Z(j)) yy is then a constant term si

rationalised

of ¢« in
f\"lction

0uldh t
the rey |
firg |

'of .Z(s) e
presence of a series resistance whose r‘f"\lfying the
equal to the minimum real vaj 3

g BRitude
. 3 2 . i
Y,6) Howeyer if given in form of Y (s), the]o;:a'obhmed'
value is that of a shunt resistor. T
y Step 3
fion
In case the given function
does ;
real Part, then it becomes evident t;'::tt ::‘E.a
function [Z(s)‘or Y (s)] does not have an rc g:ven
Partand contains either inductance or cap};det:ﬁhve
Step 4 -
In thi »
s r;l'uus st.ep check whether the Numerator of the
Bren nction has one ‘s ferm higher. If
i .r:r:ot; has l?ne 's’ term higher, pole ap‘pears a‘:
ard th =o; e othe i i
d s i r:und if the denominator has one
j saxis exo ¢ Pole appears a¢ $=0 This
Minimum Plained as follows =
ce devoid Byyys"1
ermed a5 Say Z()=1 A sty g §+a
b, s" 4+p L s
» . n-15 totbys+b,
ct all ji, Y long divic:
pt s 8 division,
Minimyp, As)= Kys+ b\%
n
") - bys +b,,§ls"“+...+b,s+b0
ds to the 1
e -(21.21
Pole at ¢ =a, " ( )

&

Obseryeq that Z(s) wil

I have a

1
'
!
|

{
t
t
[
i

{

{
i
1
\

\,

reseed in impedance form, the first term thes
(;:Z”m(,s a weries inductor; if the otiginal expression
of the function i3 in adrittance form, the former can
reveal the presence of a shurt capacitor,

On the other hand, for the czue viten there is
one higher 5 term in the denominator, the first terrn
{s a serics capaditor provided the function is i
gxpre-w;d in impedance form. I‘f the furction is
exprassed in admittance form, this cawe revesls the
presence of a shunt inductor.

Step 5
Perform the first long division to cotain the fizst

quotient. In the first case of step 4, the quotient will
be (K, 3) indicating the value of the ssries mductor
(if the function is originally expressed in Z forra) o
be K, Henry. If the function is onginally expressed
in Y form, (Ks) indicates the presence of a shunt
capacitor of value K, Farad. On the other hard if

Ky . 2
the first quotient is —'— in step 4, the magritude of
s

the series capacitor is (1/K;) Farad when tre
original function is expressed in Z form, If the

Ky
original function be expressed in f form, fis —

quotient indicates that the first element being shunt
inductor, its value is (1/ K,) Henry.

Step 6

Once the first part of the given function i
realised, the remainder is inverted and the
realisation is again commenced starting from
step-1.

This process continuous tll the last element i
realised.

Stey 2. Y aly &+

Trme Z, (s5(=3

i At
< g
nductance wondid pavs vl of 1 10

< p ’ 7 PR
Step 3. Swex 74 (55 - - Py o

- © »2Z 13

Prevmae of orle it 1= 5 5 o L0 2 T Loy

of rrrerator in ol ore Tagrer Fox the sdsaTmaves

fumetion ¥, {3}, prewser F prAe xf 5 - 7 TSRS 3

paralel capaciusnce wohr ¥R COT, T ST e
try breaicing 7 (5 2

7., (55 20 perriat fractomn,

‘ -
s * P v
Step 4. Y. (5= & =Y (oY (5
= 2 8
- ) _—
7, (& = Tlicates e yaae £ Tw
i Z
: . 3
capacitazrce to e - Farad w0 prcaliel be Y (90 =

oo
Lt g

ts evidently an wbucy of L=l Henry,
complete realisation is shows in Fig, E21.I.

LE 2125 Praline the prrmort ariwne sepelans
st ~155" &7
grenas L, (s} = —

¢ 2%

Scanned with CamScanner



S

SOLUTION, Step 1. Substitution of s = jo reves

that Z, (s)dovs not have any real part and hence it

" can be inferred that Z, (s) would not have any
resistance element. .

Since the degree of s term in numerator is one

higher than the degree of s in denominator henev it

, is evident that Z) (syhas a pole at infinity indicating

g1 presence of an series inductor. The magnitude of
the series inductance can be obtained by using long

division method.

Stepde s a2 ste 108047 (s

e s
3 s+ 7
. R 2 2
o Z (9t +10s° +7 8t +7
*» _A., = 3 -~ =3+ 3
] s7 &5 s +2s

= Nu (s)+ N,d ()
Thus the inductor has an impedance of Z, (s)

Also for Y, (s), the d

exree of £ in numerator js
ONe mare ; tor is

4..» ($)would have a pole at i i
parallel capeditor poie atinfimty resulting a

4 Mep 4. Again by long division, we find,

p % T | ']
MTeT)s e (=

te. ww {s) is the admi

tance of the
cven by 2 the ca
8

. Paator bem
* HRUs indicates than the ¢ :

Ipadtor has a

Leo

Capaatance of A_ Farad.

the pole is at ori
function.

7 presence of a s¢
m. mn»w:sm:ﬁ:.‘_,

Z(s) by its denominator (Step 2).

Step 5. Next, converting Yo(s) o im

form,
8147 61 56

(®/8)s S :

Since expression of Z, (s) has g ;
one degree higher than that in denomjp at

it is evident :ﬂ” Z, (s)is a series in a:QcQ_...
ACtor haw:

inductance of S H ‘ .?Ew

Step 6. Again inversion of Z

Z;(s)=

i
N
b3

form T (s) o.,..y reveals th 7 )in mas:pyo
- (§)==— cveals the prese,
T s6 presence of a po,
infinity indicating the pre
9
— Farad.
56
The complete synthesis is shown inFig, E21y

sence of g shunt p
of Pacity

1H (64/9) H

being denoted by s iie, the inductance is 1 Henry. 2 H mm u‘.hm
e 3 %
< = ,.n‘.u -7 . .
Step 3, Since Zi(9)= ey »inverting it we get.
Fig. £21.2
X st
waqulallh. e
8s° 47 Exaweie 2128 Realise the n [ :
£ £ ¢ the network havine |
— 4 5 cork having ::&.n&:&

Fraa X +ds+40°
s(s+10)
SowuTiox. Step 1. Inspection of Z(

. . s)reveals that
8in (s =0) for the given impedance

~. Location of a pole at $=0 indicates the

nes capacitor whose value can be
ng long division of numerator of

Step 2. m._al.u.t.éﬁ
b
45 4 40
2
2
Nm.&ﬂm’d.,.._u.lvl.«fcl.-.’ !v.u
s(s+10) ...m+_=m
4

W 5
s vm¢HOHN_ Anv¢N..Amv

3.9

860 n.._.ncm_ T
o
ty

e e et e

‘

osis of Passive Networks 861

synth
i 4 i
Then Z, zum indicates the ecapacitor having

C nm Farad in series with Z, (s) [Fig. E21.3(a)]
L)

n_
—f—
2> BF |z

\‘l‘l‘l‘
Fig- £21.3 (1)

Step 3..We will now realise Z, (s) by first
rting it as Y ($)-

1 s+10

y S, (§)= = .

v Bl Z,(s) s

Since Y, (s) has a pole at s=0, it is evident that
this indicates a parallel inductance determined by
dividing the numerator (s + 10) by s (step 4).

inve

Step 4. s)s+10(1
s
10
s+10 10
ie, Yy()=——=1+—
T — s S
10 .
nln+_u<u5+f3
R 10, oot i o .
2. Y, (s) = — indicates an inductor in parallel to

Y, (s). Obviously if Y; Enmm. for an inductor,
s

Z,(3) n_l..m = L;sindicating L, uww Henry.

The circuit is realised in Fig. E21.3{8) -

Fig. £21.3 ()

Step 5. Removing Yy (s) from Yy ()it _a m...i.ﬂw“
that the left out portion is ﬁ?.:.n.:, m_»_.d._nn..nu‘ww
independent of s term hence it is evident ..“nu.u i
constant term representing & resistance ofl

Step 6. The com icabion i
plete realisati
below (Fig, E21300) on is then shown

U4F
—

1
Tk

.i
Fig. 2.3 9

EVRLE 3175 Rt th netert having fepodon
Exaueig M. 22 ReGlise the network hazing b
Sunction : i -
st 425410

s(s+5)

SOLUTION. Step 1. We observe that Z(s) has a
pele at s=0 Location of a pole at s =0 indicates the
presence of a series capaditor whose value can be
determined using long division of numerator of
Z(s) by its denominator (Step 2).

Z(s)=

Step2.  s?45s) st 254 10¢

YN

Thus Z, (s)== indicates the value of the senies

2
3
capacitance to be W Farad.

Step 3. To realise Z, (s), it is inverted to gives
Y, (9

=3 12X, (94 Y, (9
s

Since Y, (s) has a pole at s=0, it is then evident
that there exists a parallel inductance in Yy (sh B
vatue is indicated in step.

1 s 1 g
——=—=-_5(= s)

Stepd. Zy(9) @5 s L, :

Thus the parallel inductance has a value .nsw

Henry. .

Plemas>zn
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in thi s long division,
f - peing Y, (), in this By
Iy left portion being Yy ()10 .
Step 5- ..?ms:., g P -1 indicates Z (=1 57 4) 250425 RW
problem it 15 1. Thus Yy (s)=] . w. ; 2
ie n?ﬂm:mpn a resistor of 102 in pard le 84 3 (8)- B N
y : 3 i i i . S —
The complete realisation 1% shown in Fig: E21.4. .2
12F B
* 5
1y . w\?vl.mm+ 2s/5 Yy
5 s 12 5 5sl+4 3()+ Y, (s)
2 icates that th
Fig. E21-4 Y, 0=5° icates that the parallel capacg,, |
. E21. |
ey _
Elh\m The impedance function of a network is s of g Farad.
giome by . |
zes)= E 3 Next, we invert Y (s) to obtain Z, (s)
253 425 7 A.&nmmN+A.h.mmm~ +20
T 2s/5 25

Realise the network.

SOLUTION.

65> +552 +65+4

2=
mm+~m

|mmu+mm~ +mm+a

B immn +2)

It may be observed that Re[Z(s)] at s = jo has
s devoid of s terms and its minimum real value
is a constant term with @ =0. Thus the first element

term:
is a resistance term whose value can be found out
by long division method.
2%+ 25) 653 + 552 + 65+ 4 (3
6s° + 6s

562+ 4

. 552 + 4
s Z(s)=3+—5—= ;
257125 Z(9)+Z,(5)

Thus, Z i i
is ovs.o:mq_ “ Mmﬂ..m.“ﬂ“““”%»‘m wmm.vmﬂmm G
Next we observe Z, (s). It is inverted and then
263 425
552 +4

Y, ()=

Y, (s) has
£ no real part and hence i
3 ce it
ﬁ”“\m& any _.mw.ms__.. Again, since the :::..MMHME Mow
o mwmﬂmm r_wwm_. than denominator, Y. th. "
s=o0 indicating th of - i
T g the presence of a paralle]

862 Cires, -

Since the degree of s is higher in ::am:a..
than denominator, Z, (s) would have a pole at -
This indicates a series inductor. ..s,

1
Also, Z, (5)=12.55+ % 7 (942, (9)

Thus the inductor Zs (s) would be of Hw;m Henry

while Z; (s) would be a series capacitor of — Farad
10

The complete realisation is shown in Fig

E21.5.

2
> oF 125H
10

ErTEETeE

Fig. E21.5
ExampLE 21.29 An admittance ?:Q&.: is given s
452 +65

Y(s) = ; _
s+1° t

Realise the network.
] SoLuTION. Step 1. We obse
.E_szm_m_.m~o_..vo_§oamm_ is of one degre:
enominator polynomial. Thus a P

rve that the
e Emrww than
ole exists &

s=am, i i
o Madﬁ dearly indicates that for the given
pedance ?DQ_.O? for _uo_m at s=c0, a ﬁnwm:&

g ined by

capaci :
i MMMMMMMMEW whose value can be deter™
n meth,
hod (Step-2)

.

e —

25 =Y, (5)+ Y2 (9)

pf
that the value of the

Y, (5)18 inverted such that

step 3. Ne

ing a pole ats=0,it is
vident that there series ,..,nm.,.ﬁ,.ca
B ented by Z, (8) in series with Z,(3).

-_u , the capacitor would be

repres .
Owiocm:\ Zy (s) being 5

Z, (%) being hav

:c:.mcw_.. )
will be a

of 2 Farad.
it is a resistance

step 4. Zy
1 g in series wit
2

The com

s)being devoid of 5,
h Z4 (5)-

of
plete realisation is shown in Fig E21.6.

4F

e

Fig. E21 .6
7s+5

\I\\l\‘,\ . s
ExAMPLE WNH .30 Synthesize Y =379

SoLuTION. With s=j& the real part of Y (jo)

chis obtained as

2ot +45

e uiliibiftond
WEN +81

appears whi
Rel Y (jo)1=

art occurs at =0
. 5

Min[Re Y (je}] =5

. : "

Thus the resistive part in «.E is nwﬁuﬂwwcﬂ
since the expression iS given in mn_a.zmw:&u:ﬁm
hence the value obtained s actually o™ =
clearly jndicates th¢

instead of resistance: This, 1 as first
resistance of 5 ohm is no_._:mamn in _“S.‘n:m as firs
9

The minimum real p

element.

o "
Tre lefs anst porsion of Y (5] b fiwun

=Y (-
] $e 0 !
ihs
%is I7
3 ¥y - 27 2z
Zisfs cmramr. o s g
, ) 0
iz, the proence of & wrey resstar of = ofem
14
»

chtained in ths sty
»

The remaung porson = Yt mdsates &
[

e hdernity of 8 wras

5

pole at zero. This nevealy ¢
Ie
capacttor of — Farad The compiete realiatian is

7

shown in Fig. E21.7.

\
fig. E21.7
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w218 REACTIVE NETWORKS B
Any L-Cone port petwoTk (UEIETS 2 e
element and is thus uczmﬁnrk...xﬂ
puint immittance (either impedarce F admpattance}
can be obtained By oredary OF

B el 0
! ol e
admittance expression 1 A

P nted
g tw hemwns
network LC networks ar< &
networks.

cally catied the PeSITY
Any given 1°3

vither weries of ’

In senies nﬁdu..u..i.nwc .

Z(s) of the combination 8 grven by
e 7,8

(s} + -\nCT.

The SrvEK

may b v-w:.vvn up
e of L-<

e bl

ctive petwers
paraliel @ b

into "~

elements.
impedance

2(5)=4

fi il
. sy " F
[ 3R] =

z=ih =T

or.

(2 2M3)
mpedance s :?r“m

Jance < w
(s

e the inductor L hast
auﬂbﬁaa C bas imp
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