BINARY TO GRAY CODE CONVERSION AND VICE VERSA

Aim: To realize binary to gray and gray to binary code converters.

Learning objective:

- To learn the importance of non-weighted code.
- To learn to generate gray code.

Components required: IC 7486, trainer kit, patch cords.

Theory:

The logical circuit which converts binary code to equivalent gray code is known as **binary to gray code converter**. The gray code is a non-weighted code. The successive gray code differs in one bit position only that means it is a unit distance code. It is also referred as cyclic code. It is not suitable for arithmetic operations. It is the most popular of the unit distance codes. It is also a reflective code. An n-bit Gray code can be obtained by reflecting an n-1 bit code about an axis after 2ⁿ⁻¹ rows, and putting the MSB of 0 above the axis and the MSB of 1 below the axis.

Circuit implementation:

Binary to gray code converter:

0	0	1	1	G3 = B3	0	1	1	0	
0	0	1	1		0	1	1	0	
0	0	1	1	1	1	0	0	1	
0	0	1	1	٠.	1	0	0	1	G1=B1 ⊕ B2
				_					1
0	1	0	1]	0	0	0	0	
0	1	0	1	1	1	1	1	1	
0	1	0	1	G2= B3 ⊕ B2	0	0	0	0	
0	1	0	1		1	1	1	1	G0=B1 ⊕ B0

Truth table:

Binary inputs				Gray outputs			
В3	B2	B1	B0	G3	G2	Gl	G0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Gray to binary code converter:

0	0	1	1	
0	0	1	1	
0	0	1	1	
.0	0	1	1	

$$B3 = G3$$

0	1	0	1
0	1	0	1
0	1	0	1
0	1	0	1

0	1	0	1	
0	1	0	1	B1=G3 ⊕ G2 ⊕ G1
1	0	1	0	D03 0 02 0 0.
1	0	1	0	

0	1	0	1
1	0	1	0
0	1	0	1
1	0	1	0

Truth table:

Gray inputs				Binary outputs			
G3	G2	Gl	G0	В3	B2	B1	B0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

Procedure:

- Check the components for their working.
- Insert the appropriate IC into the IC base.
- Rig up the circuit as shown in the logic circuit diagram.
- Apply various input data to the logic circuit via the input logic switches.
- Note down the corresponding output and verify the truth table.

Result: