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Instructional Objectives:

After reading this chapter the student will be able to

1. Compute horizontal reaction in two-hinged arch by the method of least work.
2. Write strain energy stored in two-hinged arch during deformation.

3. Analyse two-hinged arch for external loading.

4. Compute reactions developed in two hinged arch due to temperature loading.

33.1 Introduction

Mainly three types of arches are used in practice: three-hinged, two-hinged and
hingeless arches. In the early part of the nineteenth century, three-hinged arches
were commonly used for the long span structures as the analysis of such arches
could be done with confidence. However, with the development in structural
analysis, for long span structures starting from late nineteenth century engineers
adopted two-hinged and hingeless arches. Two-hinged arch is the statically
indeterminate structure to degree one. Usually, the horizontal reaction is treated
as the redundant and is evaluated by the method of least work. In this lesson, the
analysis of two-hinged arches is discussed and few problems are solved to
illustrate the procedure for calculating the internal forces.

33.2 Analysis of two-hinged arch

A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch,
we have four unknown reactions, but there are only three equations of
equilibrium available. Hence, the degree of statical indeterminacy is one for two-
hinged arch.
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Fig. 33.1a Two - hinged arch.
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The fourth equation is written considering deformation of the arch. The unknown
redundant reaction H, is calculated by noting that the horizontal displacement of

hinge B is zero. In general the horizontal reaction in the two hinged arch is
evaluated by straightforward application of the theorem of least work (see
module 1, lesson 4), which states that the partial derivative of the strain energy of
a statically indeterminate structure with respect to statically indeterminate action
should vanish. Hence to obtain, horizontal reaction, one must develop an
expression for strain energy. Typically, any section of the arch (vide Fig 33.1b) is
subjected to shear forceV , bending moment M and the axial compressionN .
The strain energy due to bending U, is calculated from the following expression.

S M 2
Uy =y ds (33.1)

0

The above expression is similar to the one used in the case of straight beams.
However, in this case, the integration needs to be evaluated along the curved
arch length. In the above equation, s is the length of the centerline of the arch, 1
is the moment of inertia of the arch cross section, E is the Young’s modulus of
the arch material. The strain energy due to shear is small as compared to the
strain energy due to bending and is usually neglected in the analysis. In the case
of flat arches, the strain energy due to axial compression can be appreciable and
is given by,

U =i—ds (33.2)
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The total strain energy of the arch is given by,

S M 2 S N2
U= j ds+ [——ds (33.3)
J2EI 4 2AE

Now, according to the principle of least work

Q =0, whereH is chosen as the redundant reaction.

oH

QZIM‘?M ds-+ | N N0 (33.4)
oH 5

El oH AE oH

0
Solving equation 33.4, the horizontal reaction H is evaluated.

33.2.1 Symmetrical two hinged arch

Consider a symmetrical two-hinged arch as shown in Fig 33.2a. Let C at crown
be the origin of co-ordinate axes. Now, replace hinge at B with a roller support.
Then we get a simply supported curved beam as shown in Fig 33.2b. Since the
curved beam is free to move horizontally, it will do so as shown by dotted lines in
Fig 33.2b. Let Mj,and N,be the bending moment and axial force at any cross
section of the simply supported curved beam. Since, in the original arch
structure, there is no horizontal displacement, now apply a horizontal force H as
shown in Fig. 33.2c. The horizontal force H should be of such magnitude, that
the displacement at B must vanish.
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Fig. 33.2a

Structure
before applying
external load

Fig. 33.2b.

Version 2 CE IIT, Kharagpur



Structure before
— applying H
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Fig. 33.2c.

H=N Cos®

Fig. 33.2d.

From Fig. 33.2b and Fig 33.2c, the bending moment at any cross section of the
arch (say D), may be written as
M=M,-H(h-y) (33.5)

The axial compressive force at any cross section (say D) may be written as

N =N, +Hcosé (33.6)

Where @ is the angle made by the tangent at D with horizontal (vide Fig 33.2d).
Substituting the value of M and N in the equation (33.4),

Q_OZ_J-MO—H(h—y)(h_y)dSJrJN0+Hcose

= cosdds (33.7a)
oH 0 El 0
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Let, y=h-y

—IMO_ Y54 +JN +HC0S sods =0 (33.7b)
0 EI 0
Solving forH , yields
—_[MO cos9d3+jmd =0
) El EI
Ih/l;’Yds—I!’coseds
H=2 (33.8)

Using the above equation, the horizontal reaction H for any two-hinged
symmetrical arch may be calculated. The above equation is valid for any general
type of loading. Usually the above equation is further simplified. The second term
in the numerator is small compared with the first terms and is neglected in the
analysis. Only in case of very accurate analysis second term s considered. Also
for flat arched, cosd =1as @ is small. The equation (33.8) is now written as,

'\élo y ds
ds

j ds+|—

JEl - JEA

O e

‘~<z

As axial rigidity is very high, the second term in the denominator may also be
neglected. Finally the horizontal reaction is calculated by the equation

ds
H = (33.10)
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For an arch with uniform cross section El is constant and hence,
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IMoyds
H=0 —— (33.11)
Iyzds
0

In the above equation, M, is the bending moment at any cross section of the arch
when one of the hinges is replaced by a roller support. y is the height of the arch

as shown in the figure. If the moment of inertia of the arch rib is not constant,
then equation (33.10) must be used to calculate the horizontal reactionH .

33.2.2 Temperature effect

Consider an unloaded two-hinged arch of spanL. When the arch undergoes a
uniform temperature change of T°C, then its span would increase by « LT if it
were allowed to expand freely (vide Fig 33.3a). a is the co-efficient of thermal
expansion of the arch material. Since the arch is restrained from the horizontal

movement, a horizontal force is induced at the support as the temperature is
increased.
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Fig. 33.3a
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Fig. 33.3b.

Now applying the Castigliano’s first theorem,

‘ ~2 *Hcos?*@
=T

Solving forH ,

alLT

A= % cos? 49
L S
i) e

ds

Y

(33.12)

(33.13)

The second term in the denominator may be neglected, as the axial rigidity is
quite high. Neglecting the axial rigidity, the above equation can be written as

alT
S =2

Iy ds

H =

(33.14)
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Example 33.1

A semicircular two hinged arch of constant cross section is subjected to a
concentrated load as shown in Fig 33.4a. Calculate reactions of the arch and
draw bending moment diagram.

A
X

A 15m LS
i & . \ B -
- " 2
le ™ o
N |
Ray Rh)‘
L 30 m |
I |
Fig. 33.4a.
Solution:
Taking moment of all forces about hinge B leads to,
R =39%22_ 593 3 kN (M)
y 30
> Fy=0 =R, =10.67 kN (T) 1)
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Fig. 33.4b.
From Fig. 33.4b,
y =Rsiné
Xx=R(l-cos0)
ds=Rdé@ (2)
13.267

tan g, = =0, =62.18°= 7/ oocrad

Now, the horizontal reaction H may be calculated by the following expression,

jMOYds
H=20

: 3)
jyz ds

Now M, the bending moment at any cross section of the arch when one of the
hinges is replaced by a roller support is given by,
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M, =R, x=R, R(1-cosd)

and,

M, =R,, R(1-cos@) —40(x -8)

=R, R(L-c030)~40{R(L-c0s0) -8 0,<0<x )

Integrating the numerator in equation (3),

s 6, b
[Mo¥ds = [R, R*(1—cos0)sin0d0+ [[R,, R(L-cosd) - 40{R(L-cosd) —8}Rsin O RdO
0 0 [Z

c

12.895

=R, R® J(l—cos@)sin@déMRz j[Ray R(L-cos8)sin @ — 40{R(1—cos&)sin & —8sin G} d &
0

712895

712.895 T T V4
=R, R%[-coso]  + R{[Ray R(-cosf)| = —[40R(-cosd)] =~ +[40x8(-cosh)] }
0 712.895

712.895 7 12.895
— 0.533R, R® + R%[[L.4667R,, R]|-[40R(L.4667)]+[40x8(1.4667) ]
=52761.00 + 225(645.275 — 410.676) = 105545.775 (5)

The value of denominator in equation (3), after integration is,

jyzds = ]E(Rsin 0)*Rd6o
0 0

) (6)
=R| 1-c0s20 ;5 _ re( 7 | —5301.46
A 2

Hence, the horizontal thrust at the support is,

_ 105545.775 1990 KN 7)
5301.46
Bending moment diagram

Bending moment M at any cross section of the arch is given by,
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M =M, - Hy

=R, R(l-cosd) - HRsin g 0<6<6, (8)
=439.95(1— cosd) — 298.5sin &
M = 439.95(1— cosd) —298.5sin 8 — 40(15(1 - cos @) — 8) 6.<0<rzr (9)

Using equations (8) and (9), bending moment at any angle ¢ can be computed.
The bending moment diagram is shown in Fig. 33.4c.

93.74kN.m

1)) —

/ T

Fig. 33.4c Bending moment diagram
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Example 33.2

A two hinged parabolic arch of constant cross section has a span of 60m and a
rise of 10m. It is subjected to loading as shown in Fig.33.5a. Calculate reactions
of the arch if the temperature of the arch is raised by40°C . Assume co-efficient

of thermal expansion as a =12x107°/°C.

L 10 m o
[ ]l
40 kN
A
Y
: c
y
T . 10 m
H H
¥ b
—»{ ———»x —r B <
i AT
R., R,,
| 60 m |
I i
Fig. 33.5

Taking A as the origin, the equation of two hinged parabolic arch may be written
as,

(1)

The given problem is solved in two steps. In the first step calculate the horizontal
reaction due to 40 kN load applied atC . In the next step calculate the horizontal
reaction due to rise in temperature. Adding both, one gets the horizontal reaction
at the hinges due to combined external loading and temperature change. The
horizontal reaction due to 40 kN load may be calculated by the following
equation,
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iMoyds

H =t—— (2a)
I y2ds
0
For temperature loading, horizontal reaction is given by,
H,=-2LT (2b)
_[y—ds
) El
Where L is the span of the arch.
For 40 kN load,
S 10 60
jMOyds:jRayxydx+I[Rayx—40(x—1O)]ydx (3)
0 0 10

Please note that in the above equation, the integrations are carried out along the
x-axis instead of the curved arch axis. The error introduced by this change in the
variables in the case of flat arches is negligible. Using equation (1), the above
equation (3) can be easily evaluated.

The vertical reaction A is calculated by taking moment of all forces aboutB .
Hence,

R, =~ [40x50]=33.33 kN
60

R, =6.67 kN.
Now consider the equation (3),

' 10 2 10 0 2 10
M. ydx = [(33.33) x(=x ——x?)dx + |{(33.33)x — 40(x —10) |(= x — — x?) dx
Moyax = (83339 x( 1) dc+ [[(8338)x~40(x -10))(G X~ 5x)

= 6480.76 + 69404.99 = 74885.75 4
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Iy dx = I[ X—W szx

=3200

()

Hence, the horizontal reaction due to applied mechanical loads alone is given by,

M
j oy d _ 7588575
Hl_ |

=23.71 kN (6)
Iy 3200

0

The horizontal reaction due to rise in temperature is calculated by equation (2b),

12x107° x60x 40 _ EI'x12 x107® x60x 40

H, = 3200, B 3200

Taking E=200 kN/mm® and | =0.0333m*
H,=59.94 kN. @)

Hence the total horizontal thrust H =H, + H, =83.65 kN.
: . : . tM,y ty?
When the arch shape is more complicated, the integrations j?ds and Jads
0 0

are accomplished numerically. For this purpose, divide the arch span in to n
equals divisions. Length of each division is represented by (As). (vide Fig.33.5b).

At the midpoint of each division calculate the ordinate y, by using the

equationy = gx _1_02le The above integrals are approximated as,

[ Ejyds——Z(Mo) Y, (As), ®)
S 2 1 n 5
O%dwag(yx (89) ©)

The complete computation for the above problem for the case of external loading
is shown in the following table.
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Fig. 33.5(b)

Table 1. Numerical integration of equations (8) and (9)

|
|
I

®

Segme Horizontal Correspond | Momentat | (M,);y;(As); | (y).2(As),
nt distance x ing y; that
No Measured (m) Point (M),
from A (m) (kNm)

1 3 1.9 99.99 1139.886 21.66

2 9 5.1 299.97 9179.082 156.06

3 15 7.5 299.95 13497.75 337.5

4 21 9.1 259.93 14192.18 496.86

5 27 9.9 219.91 13062.65 588.06

6 33 9.9 179.89 10685.47 588.06

7 39 9.1 139.87 7636.902 496.86

8 45 7.5 99.85 4493.25 337.5

9 51 5.1 59.83 1830.798 156.06

10 57 1.9 19.81 225.834 21.66
> 75943.8 3300.3

_ Z(Mo)i yi(As) 75943.8 _2373 kN (10)

PO (y)A(As),  3200.3

This compares well with the horizontal reaction computed from the exact
integration.

Summary

Two-hinged arch is the statically indeterminate structure to degree one. Usually,
the horizontal reaction is treated as the redundant and is evaluated by the
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method of least work. Towards this end, the strain energy stored in the two-
hinged arch during deformation is given. The reactions developed due to thermal
loadings are discussed. Finally, a few numerical examples are solved to illustrate
the procedure.
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